Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Pathol ; 57(1): 90-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331254

RESUMO

Mammalian transmissible spongiform encephalopathies (TSEs) display marked activation of astrocytes and microglia that precedes neuronal loss. Investigation of clinical parallels between TSEs and other neurodegenerative protein misfolding diseases, such as Alzheimer's disease, has revealed similar patterns of neuroinflammatory responses to the accumulation of self-propagating amyloids. The contribution of glial activation to the progression of protein misfolding diseases is incompletely understood, with evidence for mediation of both protective and deleterious effects. Glial populations are heterogeneously distributed throughout the brain and capable of dynamic transitions along a spectrum of functional activation states between pro- and antiinflammatory polarization extremes. Using a murine model of Rocky Mountain Laboratory scrapie, the neuroinflammatory response to prion infection was characterized by evaluating glial activation across 15 brain regions over time and correlating it to traditional markers of prion neuropathology, including vacuolation and PrPSc deposition. Quantitative immunohistochemistry was used to evaluate glial expression of iNOS and Arg1, markers of classical and alternative glial activation, respectively. The results indicate progressive upregulation of iNOS in microglia and a mixed astrocytic profile featuring iNOS expression in white matter tracts and detection of Arg1-positive populations throughout the brain. These data establish a temporospatial lesion profile for this prion infection model and demonstrate evidence of multiple glial activation states.


Assuntos
Inflamação/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Scrapie/patologia , Animais , Arginase/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neuroglia/patologia , Regulação para Cima
2.
Genes Dis ; 2(3): 247-254, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258868

RESUMO

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases. These infectious disease-genetic disorder pairings include malaria and hemoglobinopathies, cholera and cystic fibrosis, tuberculosis and Tay-Sachs disease, mycotic abortions and phenylketonuria, infection by enveloped viruses and disorders of glycosylation, infection by filoviruses and Niemann-Pick C1 disease, as well as rabies and myasthenia gravis. We also discuss two genetic conditions that lead to infectious disease hypersusceptibility, although we did not cover the large number of immunologic defects leading to infectious disease hypersusceptibilities. Four of the resistance-associated pairings (malaria/hemogloginopathies, cholera/cystic fibrosis, tuberculosis/Tay-Sachs, and mycotic abortions/phenylketonuria) appear to be a result of selection pressures in geographic regions in which the specific infectious agent is endemic. The other pairings do not appear to be based on selection pressure and instead may be serendipitous. Nonetheless, research investigating these relationships may lead to treatment options for the aforementioned diseases by exploiting established mechanisms between genetically affected cells and infectious organisms. This may prove invaluable as a starting point for research in the case of diseases that currently have no reliably curative treatments, e.g., HIV, rabies, and Ebola.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA