Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Neurophysiol Clin ; 54(5): 102997, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991470

RESUMO

OBJECTIVES: Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson's disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting. METHODS: Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5). RESULTS: Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628 ms, off-medication post-intervention = 564 ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received. CONCLUSION: Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.

2.
Schizophr Bull ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824450

RESUMO

BACKGROUND: Sensory suppression occurs when hearing one's self-generated voice, as opposed to passively listening to one's own voice. Quality changes in sensory feedback to the self-generated voice can increase attentional control. These changes affect the self-other voice distinction and might lead to hearing voices in the absence of an external source (ie, auditory verbal hallucinations). However, it is unclear how changes in sensory feedback processing and attention allocation interact and how this interaction might relate to hallucination proneness (HP). STUDY DESIGN: Participants varying in HP self-generated (via a button-press) and passively listened to their voice that varied in emotional quality and certainty of recognition-100% neutral, 60%-40% neutral-angry, 50%-50% neutral-angry, 40%-60% neutral-angry, 100% angry, during electroencephalography (EEG) recordings. STUDY RESULTS: The N1 auditory evoked potential was more suppressed for self-generated than externally generated voices. Increased HP was associated with (1) an increased N1 response to the self- compared with externally generated voices, (2) a reduced N1 response for angry compared with neutral voices, and (3) a reduced N2 response to unexpected voice quality in sensory feedback (60%-40% neutral-angry) compared with neutral voices. CONCLUSIONS: The current study highlights an association between increased HP and systematic changes in the emotional quality and certainty in sensory feedback processing (N1) and attentional control (N2) in self-voice production in a nonclinical population. Considering that voice hearers also display these changes, these findings support the continuum hypothesis.

3.
Clin Neurol Neurosurg ; 241: 108311, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38704879

RESUMO

BACKGROUND: Neurological complications in COVID-19 patients admitted to an intensive care unit (ICU) have been previously reported. As the pandemic progressed, therapeutic strategies were tailored to new insights. This study describes the incidence, outcome, and types of reported neurological complications in invasively mechanically ventilated (IMV) COVID-19 patients in relation to three periods during the pandemic. METHODS: IMV COVID-19 ICU patients from the Dutch Maastricht Intensive Care COVID (MaastrICCht) cohort were included in a single-center study (March 2020 - October 2021). Demographic, clinical, and follow-up data were collected. Electronic medical records were screened for neurological complications during hospitalization. Three distinct periods (P1, P2, P3) were defined, corresponding to periods with high hospitalization rates. ICU survivors with and without reported neurological complications were compared in an exploratory analysis. RESULTS: IMV COVID-19 ICU patients (n=324; median age 64 [IQR 57-72] years; 238 males (73.5%)) were stratified into P1 (n=94), P2 (n=138), and P3 (n=92). ICU mortality did not significantly change over time (P1=38.3%; P2=41.3%; P3=37.0%; p=.787). The incidence of reported neurological complications during ICU admission gradually decreased over the periods (P1=29.8%; P2=24.6%; P3=18.5%; p=.028). Encephalopathy/delirium (48/324 (14.8%)) and ICU-acquired weakness (32/324 (9.9%)) were most frequently reported and associated with ICU treatment intensity. ICU survivors with neurological complications (n=53) were older (p=.025), predominantly male (p=.037), and had a longer duration of IMV (p<.001) and ICU stay (p<.001), compared to survivors without neurological complications (n=132). A multivariable analysis revealed that only age was independently associated with the occurrence of neurological complications (ORadj=1.0541; 95% CI=1.0171-1.0925; p=.004). Health-related quality-of-life at follow-up was not significantly different between survivors with and without neurological complications (n = 82, p=.054). CONCLUSIONS: A high but decreasing incidence of neurological complications was reported during three consecutive COVID-19 periods in IMV COVID-19 patients. Neurological complications were related to the intensity of ICU support and treatment, and associated with prolonged ICU stay, but did not lead to significantly worse reported health-related quality-of-life at follow-up.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , Doenças do Sistema Nervoso , Respiração Artificial , Humanos , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Incidência , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/epidemiologia , Estudos de Coortes , Países Baixos/epidemiologia , Mortalidade Hospitalar , SARS-CoV-2
5.
J Neurosci Methods ; 407: 110138, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648892

RESUMO

BACKGROUND: Resting state (RS) brain activity is inherently non-stationary. Hidden semi-Markov Models (HsMM) can characterize continuous RS data as a sequence of recurring and distinct brain states along with their spatio-temporal dynamics. NEW METHOD: Recent explorations suggest that HsMM state dynamics in the alpha frequency band link to auditory hallucination proneness (HP) in non-clinical individuals. The present study aimed to replicate these findings to elucidate robust neural correlates of hallucinatory vulnerability. Specifically, we aimed to investigate the reproducibility of HsMM states across different data sets and within-data set variants as well as the replicability of the association between alpha brain state dynamics and HP. RESULTS: We found that most brain states are reproducible in different data sets, confirming that the HsMM characterized robust and generalizable EEG RS dynamics on a sub-second timescale. Brain state topographies and temporal dynamics of different within-data set variants showed substantial similarities and were robust against reduced data length and number of electrodes. However, the association with HP was not directly reproducible across data sets. COMPARISON WITH EXISTING METHODS: The HsMM optimally leverages the high temporal resolution of EEG data and overcomes time-domain restrictions of other state allocation methods. CONCLUSION: The results indicate that the sensitivity of brain state dynamics to capture individual variability in HP may depend on the data recording characteristics and individual variability in RS cognition, such as mind wandering. Future studies should consider that the order in which eyes-open and eyes-closed RS data are acquired directly influences an individual's attentional state and generation of spontaneous thoughts, and thereby might mediate the link to hallucinatory vulnerability.


Assuntos
Ritmo alfa , Alucinações , Humanos , Ritmo alfa/fisiologia , Alucinações/fisiopatologia , Adulto , Masculino , Feminino , Eletroencefalografia/métodos , Adulto Jovem , Encéfalo/fisiologia , Descanso/fisiologia , Reprodutibilidade dos Testes
6.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483902

RESUMO

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transtorno Autístico , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Variações do Número de Cópias de DNA , Transtorno Autístico/genética , Células-Tronco/metabolismo , Neurogênese
7.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531844

RESUMO

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Lateralidade Funcional , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética
8.
World J Biol Psychiatry ; 25(4): 222-232, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38493363

RESUMO

OBJECTIVES: Schizophrenia genetics is intricate, with common and rare variants' contributions not fully understood. Certain copy number variations (CNVs) elevate risk, pivotal for understanding mental disorder models. Despite CNVs' genome-wide distribution and variable gene and protein effects, we must explore beyond affected genes to interaction partners and molecular pathways. METHODS: In this study, we developed machine-readable interactive pathways to enable analysis of functional effects of genes within CNV loci and identify ten common pathways across CNVs with high schizophrenia risk using the WikiPathways database, schizophrenia risk gene collections from GWAS studies, and a gene-disease association database. RESULTS: For CNVs that are pathogenic for schizophrenia, we found overlapping pathways, including BDNF signalling, cytoskeleton, and inflammation. Common schizophrenia risk genes identified by different studies are found in all CNV pathways, but not enriched. CONCLUSIONS: Our findings suggest that specific pathways - BDNF signalling - are critical contributors to schizophrenia risk conferred by rare CNVs. Our approach highlights the importance of not only investigating deleted or duplicated genes within pathogenic CNV loci, but also study their direct interaction partners, which may explain pleiotropic effects of CNVs on schizophrenia risk and offer a broader field for interventions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Variações do Número de Cópias de DNA , Esquizofrenia , Transdução de Sinais , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Transdução de Sinais/genética
9.
Neurogastroenterol Motil ; 36(4): e14771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396340

RESUMO

BACKGROUND: In preclinical studies whole gut transit (WGT) in mice is a gold-standard "leading-edge" approach that measures the time between orogastric gavage of carmine red and defecation of the first carmine red pellet. Transit studies in humans are performed during the active day because GI motility and transit are suppressed during the night. Since mice are nocturnal, WGT studies traditionally done during the day occur during their rest phase. How circadian rhythm affects WGT in mice is not known. METHODS: We used an automated approach for high temporal resolution uninterrupted testing of mouse WGT and activity. We housed wild-type Bl6/C57 mice under the standard 12 h light-dark cycles. At 8 weeks, we performed carmine red orogastric gavage and assessed WGT during Light (rest) conditions. Then, we exposed mice to a reverse 12 h light-dark cycle for 2 weeks and tested them in the Dark (active) under red light conditions. Timelapse videos were analyzed to quantify activity and to timestamp all pellets, and multiple parameters were analyzed. KEY RESULT: When complementary light cycle reversal experiments were performed, we found a significant increase in mouse activity when mice were tested during their Dark (active) phase, compared to their Light (rest) phase. In mice tested in the Active phase compared to the Rest phase, we found a significant acceleration in WGT, increased rate and total number of pellets produced, and more pellet clustering. These data show that the mice tested in the Active phase have important differences in activity that correlate with multiple alterations in gastrointestinal transit. CONCLUSION & INFERENCES: During the Active phase mice have faster WGT, produce more pellets, and cluster their output compared to testing in the Rest phase. Like in humans, circadian rhythm is an important consideration for transit studies in mice, and a simple reverse light cycle approach facilitates further studies on the role of circadian rhythm in GI motility.


Assuntos
Carmim , Ritmo Circadiano , Humanos , Camundongos , Animais , Fotoperíodo , Trânsito Gastrointestinal , Descanso
10.
J Mov Disord ; 17(2): 181-188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379425

RESUMO

OBJECTIVE: Huntington's disease (HD) is an autosomal dominant, fully penetrant, neurodegenerative disease that most commonly affects middle-aged adults. HD is caused by a CAG repeat expansion in the HTT gene, resulting in the expression of mutant huntingtin (mHTT). Our aim was to detect and quantify mHTT in tear fluid, which, to our knowledge, has never been measured before. METHODS: We recruited 20 manifest and 13 premanifest HD gene expansion carriers, and 20 age-matched controls. All patients underwent detailed assessments, including the Unified Huntington's Disease Rating Scale (UHDRS) total motor score (TMS) and total functional capacity (TFC) score. Tear fluid was collected using paper Schirmer's strips. The level of tear mHTT was determined using single-molecule counting SMCxPRO technology. RESULTS: The average tear mHTT levels in manifest (67,223 ± 80,360 fM) and premanifest patients (55,561 ± 45,931 fM) were significantly higher than those in controls (1,622 ± 2,179 fM). We noted significant correlations between tear mHTT levels and CAG repeat length, "estimated years to diagnosis," disease burden score and UHDRS TMS and TFC. The receiver operating curve demonstrated an almost perfect score (area under the curve [AUC] = 0.9975) when comparing controls to manifest patients. Similarly, the AUC between controls and premanifest patients was 0.9846. The optimal cutoff value for distinguishing between controls and manifest patients was 4,544 fM, whereas it was 6,596 fM for distinguishing between controls and premanifest patients. CONCLUSION: Tear mHTT has potential for early and noninvasive detection of alterations in HD patients and could be integrated into both clinical trials and clinical diagnostics.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38354898

RESUMO

Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.


Assuntos
Memória de Curto Prazo , Neurorretroalimentação , Humanos , Memória de Curto Prazo/fisiologia , Neurorretroalimentação/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Cognição
12.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405910

RESUMO

Mammalian parenting is an unusually demanding commitment. How did evolution co-opt the reward system to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient mouse dams. We show that kainic acid lesions of the LHb induced a severe maternal neglect phenotype in dams towards their biological pups. Next, we demonstrate that through chronic chemogenetic inactivation of the LHb using DREADDs impaired acquisition and performance of various maternal behaviors, such as pup retrieval and nesting. We present a random intercepts model suggesting LHb-inactivation prevents the acquisition of the novel pup retrieval maternal behavior and decreases nest building performance, an already-established behavior, in primiparous mouse dams. Lastly, we examine the spatial histology of kainic-acid treated dams with a random intercepts model, which suggests that the role of LHb in maternal behavior may be preferentially localized at the posterior aspect of this structure. Together, these findings serve to establish the LHb as required for maternal behavior in the mouse dam, thereby complementing previous findings implicating the LHb in parental behavior using pup-sensitized virgin female mice.

13.
Psychopharmacology (Berl) ; 241(3): 627-635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363344

RESUMO

RATIONALE: Although the study of emotions can look back to over 100 years of research, it is unclear which information the brain uses to construct the subjective experience of an emotion. OBJECTIVE: In the current study, we assess the role of the peripheral and central adrenergic system in this respect. METHODS: Healthy volunteers underwent a double inhalation of 35% CO2, which is a well-validated procedure to induce an intense emotion, namely panic. In a randomized, cross-over design, 34 participants received either a ß1-blocker acting selectively in the peripheral nervous system (atenolol), a ß1-blocker acting in the peripheral and central nervous system (metoprolol), or a placebo before the CO2 inhalation. RESULTS: Heart rate and systolic blood pressure were reduced in both ß-blocker conditions compared to placebo, showing effective inhibition of the adrenergic tone. Nevertheless, the subjective experience of the induced panic was the same in all conditions, as measured by self-reported fear, discomfort, and panic symptom ratings. CONCLUSIONS: These results indicate that information from the peripheral and central adrenergic system does not play a major role in the construction of the subjective emotion.


Assuntos
Antagonistas Adrenérgicos beta , Dióxido de Carbono , Emoções , Sistema Nervoso , Pânico , Humanos , Antagonistas Adrenérgicos beta/farmacologia , Dióxido de Carbono/farmacologia , Emoções/efeitos dos fármacos , Emoções/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Pânico/efeitos dos fármacos , Pânico/fisiologia , Sistema Nervoso/efeitos dos fármacos
14.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355299

RESUMO

A current hypothesis to explain the limited recovery following brain and spinal cord trauma stems from the dogma that neurons in the mammalian central nervous system lack the ability to regenerate their axons after injury. Serotonin (5-HT) neurons in the adult brain are a notable exception in that they can slowly regrow their axons following chemical or mechanical lesions. This process of regrowth occurs without intervention over several months and results in anatomical recovery that approximates the preinjured state. During development, serotonin is a trophic factor, playing a role in both cell survival and axon growth. Additionally, some studies have shown that stroke patients treated after injury with serotonin selective reuptake inhibitors (SSRIs) appeared to have improved recovery. To test the hypothesis that serotonin can influence the regrowth of 5-HT axons, mice received a high dose of para-chloroamphetamine (PCA) to induce widespread retrograde degeneration of 5-HT axons. Then, after a short rest period to avoid any interaction with the acute injury phase, SSRIs were administered daily for 6 or 10 weeks. Using immunohistochemistry in 5-HT transporter-GFP BAC transgenic mice, we determined that while PCA led to a rapid initial decrease in total 5-HT axon length in the somatosensory cortex, visual cortex, or area CA1 of the hippocampus, treatment with either fluoxetine or sertraline (two different SSRIs) did not affect the recovery of axon length. These results suggest that chronic SSRI treatment does not affect the regrowth of 5-HT axons and argue against SSRIs as a potential therapy following brain injury.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Humanos , Adulto , Camundongos , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Anfetamina , Fluoxetina/farmacologia , Axônios/fisiologia , Prosencéfalo , Camundongos Transgênicos , Mamíferos
15.
Sci Rep ; 14(1): 1084, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212349

RESUMO

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Benchmarking , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
16.
Brain Sci ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248277

RESUMO

In population-based cohort studies, magnetic resonance imaging (MRI) is vital for examining brain structure and function. Advanced MRI techniques, such as diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI), provide insights into brain connectivity. However, biases in MRI data acquisition and processing can impact brain connectivity measures and their associations with demographic and clinical variables. This study, conducted with 5110 participants from The Maastricht Study, explored the relationship between brain connectivity and various image quality metrics (e.g., signal-to-noise ratio, head motion, and atlas-template mismatches) that were obtained from dMRI and rs-fMRI scans. Results revealed that in particular increased head motion (R2 up to 0.169, p < 0.001) and reduced signal-to-noise ratio (R2 up to 0.013, p < 0.001) negatively impacted structural and functional brain connectivity, respectively. These image quality metrics significantly affected associations of overall brain connectivity with age (up to -59%), sex (up to -25%), and body mass index (BMI) (up to +14%). Associations with diabetes status, educational level, history of cardiovascular disease, and white matter hyperintensities were generally less affected. This emphasizes the potential confounding effects of image quality in large population-based neuroimaging studies on brain connectivity and underscores the importance of accounting for it.

17.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
18.
Pain ; 165(3): 500-522, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851343

RESUMO

ABSTRACT: Habituation to pain is a fundamental learning process and important adaption. Yet, a comprehensive review of the current state of the field is lacking. Through a systematic search, 63 studies were included. Results address habituation to pain in healthy individuals based on self-report, electroencephalography, or functional magnetic resonance imaging. Our findings indicate a large variety in methods, experimental settings, and contexts, making habituation a ubiquitous phenomenon. Habituation to pain based on self-report studies shows a large influence of expectations, as well as the presence of individual differences. Furthermore, widespread neural effects, with sometimes opposing effects in self-report measures, are noted. Electroencephalography studies showed habituation of the N2-P2 amplitude, whereas functional magnetic resonance imaging studies showed decreasing activity during painful repeated stimulation in several identified brain areas (cingulate cortex and somatosensory cortices). Important considerations for the use of terminology, methodology, statistics, and individual differences are discussed. This review will aid our understanding of habituation to pain in healthy individuals and may lead the way to improving methods and designs for personalized treatment approaches in chronic pain patients.


Assuntos
Habituação Psicofisiológica , Dor , Humanos , Habituação Psicofisiológica/fisiologia , Autorrelato , Eletroencefalografia , Imageamento por Ressonância Magnética
19.
J Pain ; 25(3): 730-741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921732

RESUMO

The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.


Assuntos
Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuropatia de Pequenas Fibras/diagnóstico , Neuralgia/diagnóstico por imagem , Neuralgia/genética , Neuralgia/complicações , Imageamento por Ressonância Magnética , Giro do Cíngulo , Canal de Sódio Disparado por Voltagem NAV1.7/genética
20.
Br J Psychiatry ; 224(2): 66-73, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993980

RESUMO

BACKGROUND: Late-life depression has been associated with volume changes of the hippocampus. However, little is known about its association with specific hippocampal subfields over time. AIMS: We investigated whether hippocampal subfield volumes were associated with prevalence, course and incidence of depressive symptoms. METHOD: We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1-weighted and fluid-attenuated inversion recovery 3T magnetic resonance images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (9-item Patient Health Questionnaire). We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and adjusted for demographic, cardiovascular and lifestyle factors. RESULTS: A total of n = 4174 participants were included (mean age 60.0 years, s.d. = 8.6, 51.8% female). Larger right hippocampal fissure volume was associated with prevalent depressive symptoms (odds ratio (OR) = 1.26, 95% CI 1.08-1.48). Larger bilateral hippocampal fissure (OR = 1.37-1.40, 95% CI 1.14-1.71), larger right molecular layer (OR = 1.51, 95% CI 1.14-2.00) and smaller right cornu ammonis (CA)3 volumes (OR = 0.61, 95% CI 0.48-0.79) were associated with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) volume was associated with incident depressive symptoms with chronic course (hazard ratio = 0.70, 95% CI 0.55-0.89). CONCLUSIONS: Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased risk of incident (chronic) depression. Our results could capture a biological foundation for the development of chronic depressive symptoms, and stresses the need to discriminate subtypes of depression to unravel its biological underpinnings.


Assuntos
Depressão , Hipocampo , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Incidência , Prevalência , Hipocampo/patologia , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA