RESUMO
Invertebrates and microorganisms are important but climate-dependent agents of wood decomposition globally. In this meta-analysis, we investigated what drives the invertebrate effect on wood decomposition worldwide. Globally, we found wood decomposition rates were on average approximately 40% higher when invertebrates were present compared to when they were excluded. This effect was most pronounced in the tropics, owing mainly to the activities of termites. The invertebrate effect was stronger for woody debris without bark as well as for that of larger diameter, possibly reflecting bark- and diameter-mediated differences in fungal colonisation or activity rates relative to those of invertebrates. Our meta-analysis shows similar overall invertebrate effect sizes on decomposition of woody debris derived from angiosperms and gymnosperms globally. Our results suggest the existence of critical interactions between microorganism colonisation and the invertebrate contribution to wood decomposition. To improve biogeochemical models, a better quantification of invertebrate contributions to wood decomposition is needed.
RESUMO
Co-occurring species often overlap in their use of resources and can interact in complex ways. However, shifts in environmental conditions or resource availability can lead to changes in patterns of species co-occurrence, which may be exacerbated by global escalation of human disturbances to ecosystems, including conservation-directed interventions. We investigated the relative abundance and co-occurrence of two naturally sympatric mammal species following two forms of environmental disturbance: wildfire and introduced predator control. Using 14 years of abundance data from repeat surveys at long-term monitoring sites in south-eastern Australia, we examined the association between a marsupial, the common brushtail possum Trichosurus vulpecula, and a co-occurring native rodent, the bush rat Rattus fuscipes. We asked: In a fox-controlled environment, are the abundances of common brushtail possums and bush rats affected by environmental disturbance and each other's presence? Using Bayesian regression models, we tested hypotheses that the abundance of each species would vary with changes in environmental and disturbance variables, and that the negative association between bush rats and common brushtail possums was stronger than the association between bush rats and disturbance. Our analyses revealed that bush rat abundance varied greatly in relation to environmental and disturbance variables, whereas common brushtail possums showed relatively limited variation in response to the same variables. There was a negative association between common brushtail possums and bush rats, but this association was weaker than the initial decline and subsequent recovery of bush rats in response to wildfires. Using co-occurrence analysis, we can infer negative relationships in abundance between co-occurring species, but to understand the impacts of such associations, and plan appropriate conservation measures, we require more information on interactions between the species and environmental variables. Co-occurrence can be a powerful and novel method to diagnose threats to communities and understand changes in ecosystem dynamics.
Assuntos
Marsupiais , Trichosurus , Animais , Humanos , Ratos , Ecossistema , Teorema de BayesRESUMO
The notion that biodiversity markets can raise money desperately needed for biodiversity conservation is gaining momentum. The dire state of biodiversity and the enormous biodiversity repair bill means that every funding option must be explored. However, the risk that trading ill-defined generic biodiversity credits will result in biodiversity loss, not conservation, should be considered. Scarce resources could be diverted to market regulation rather than conservation. Without key elements, biodiversity markets could be perverse, leading to Orwellian "doublespeak"-saying one thing, but resulting in another.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/economia , Administração Financeira , AustráliaRESUMO
Reptiles are an important part of the vertebrate fauna in the temperate woodlands of south-eastern Australia. However, compared to birds and mammals, the long-term occurrence of reptiles across woodland growth types-old growth, regrowth, and replantings-remains poorly understood. Here, using 18-years of data gathered at 218 sites across 1.5 million hectares in New South Wales South West Slopes bioregion, we sought to quantify patterns of temporal change in reptile occurrence and determine if such changes varied between woodland growth types. Despite extensive sampling, almost 75% of our 6341 surveys produced no detections of reptiles. Significant survey effort exceeding 2000 surveys was needed over a prolonged period of time to record detections of 26 reptile species in our study area. Our analyses showed a temporal increase in estimated reptile species richness and abundance over 18 years. Such increases characterized all three vegetation structural types we surveyed. At the individual species level, we had sufficient data to construct models for five of the 26 species recorded. Three of these species were least commonly detected in replantings, whereas the remaining two were most often detected in replantings relative to old growth and regrowth woodland. We found evidence of a temporal increase in two skink species, a decline in one gecko species, and no change in the remaining two skink species. Although detections were consistently low, active searches were the best survey method, and we suggest using this method in habitats known to be hotspots for reptiles, such as rocky outcrops, if the aim is to maximize the number of individuals and species detected. Our findings highlight the value of all three broad vegetation structure types in contributing to woodland reptile biodiversity.
Assuntos
Florestas , Lagartos , Humanos , Animais , Ecossistema , Répteis , Biodiversidade , New South Wales , Conservação dos Recursos Naturais/métodos , MamíferosRESUMO
Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire. Here, we used internal transcribed spacer (ITS) meta-barcoding data from forests with three different times since fire [short (3 years), medium (13-19 years) and long (>26 years)] to characterize the temporal responses of soil fungal communities across functional groups, ectomycorrhizal exploration strategies and inter-guild associations. Our findings indicate that fire effects on fungal communities are strongest in the short to medium term, with clear distinctions between communities in forests with a short time (3 years) since fire, a medium time (13-19 years) and a long time (>26 years) since fire. Ectomycorrhizal fungi were disproportionately impacted by fire relative to saprotrophs, but the direction of the response varied depending on morphological structures and exploration strategies. For instance, short-distance ectomycorrhizal fungi increased with recent fire, while medium-distance (fringe) ectomycorrhizal fungi decreased. Further, we detected strong, negative inter-guild associations between ectomycorrhizal and saprotrophic fungi but only at medium and long times since fire. Given the functional significance of fungi, the temporal changes in fungal composition, inter-guild associations and functional groups after fire demonstrated in our study may have functional implications that require adaptive management to curtail.
Assuntos
Micobioma , Micorrizas , Solo , Florestas , Micorrizas/genética , BiodiversidadeRESUMO
Old trees have many ecological and socio-cultural values. However, knowledge of the factors influencing their long-term persistence in human-dominated landscapes is limited. Here, using an extensive database (nearly 1.8 million individual old trees belonging to 1,580 species) from China, we identified which species were most likely to persist as old trees in human-dominated landscapes and where they were most likely to occur. We found that species with greater potential height, smaller leaf size and diverse human utilization attributes had the highest probability of long-term persistence. The persistence probabilities of human-associated species (taxa with diverse human utilization attributes) were relatively high in intensively cultivated areas. Conversely, the persistence probabilities of spontaneous species (taxa with no human utilization attributes and which are not cultivated) were relatively high in mountainous areas or regions inhabited by ethnic minorities. The distinctly different geographic patterns of persistence probabilities of the two groups of species were related to their dissimilar responses to heterogeneous human activities and site conditions. A small number of human-associated species dominated the current cohort of old trees, while most spontaneous species were rare and endemic. Our study revealed the potential impacts of human activities on the long-term persistence of trees and the associated shifts in species composition in human-dominated landscapes.
Assuntos
Ecossistema , Mariposas , Animais , Humanos , Bases de Dados Factuais , China , Folhas de PlantaRESUMO
Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g. by creating otherwise rare, early successional habitats), it can thwart it in others (e.g. by depleting key patch types and stand structures). Here we outline key considerations in facilitating restoration of some tall wet temperate forest ecosystems and some boreal forest ecosystems where the typical fire regime is rare high-severity stand-replacing fire. Some of these ecosystems are experiencing altered fire regimes such as increased fire extent, severity and/or frequency. Achieving good restoration outcomes in such ecosystems demands understanding fire regimes and their impacts on vegetation and other elements of biodiversity and then selecting ecosystem-appropriate management interventions. Potential actions range from doing nothing (as the ecosystem already maintains full post-fire regenerative capacity) to interventions prior to a conflagration like prescribed burning to limit the risks of high-severity fire, excluding activities that impair post-fire recovery (e.g. post-fire logging), and artificial seeding where natural regeneration fails. The most ecologically effective actions will be ecosystem-specific and context-specific and informed by knowledge of the ecosystem in question (such as plant life-history attributes) and inter-relationships with attributes like vegetation condition at the time it is burnt (e.g. young versus old forest). This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , BiodiversidadeRESUMO
Monitoring is critical to gauge the effect of environmental management interventions as well as to measure the effects of human disturbances such as climate change. Recognition of the critical need for monitoring means that, at irregular intervals, recommendations are made for new government-instigated programs or to revamp existing ones. Using insights from past well-intentioned (but sadly also often failed) attempts to establish and maintain government-instigated monitoring programs in Australia, we outline eight things that should never be done in environmental monitoring programs (if they aim to be useful). These are the following: (1) Never commence a new environmental management initiative without also committing to a monitoring program. (2) Never start a monitoring program without clear questions. (3) Never implement a monitoring program without first doing a proper experimental design. (4) Never ignore the importance of matching the purpose and objectives of a monitoring program to the design of that program. (5) Never change the way you monitor something without ensuring new methods can be calibrated with the old ones. (6) Never try to monitor everything. (7) Never collect data without planning to curate and report on it. (8) If possible, avoid starting a monitoring program without the necessary resources secured. To balance our "nevers", we provide a checklist of actions that will increase the chances a monitoring program will actually measure the effectiveness of environmental management. Scientists and resource management practitioners need to be part of a stronger narrative for, and key participants in, well-designed, implemented, and maintained government-led monitoring programs. We argue that monitoring programs should be mandated in threatened species conservation programs and all new environmental management initiatives.
Assuntos
Espécies em Perigo de Extinção , Monitoramento Ambiental , Animais , Austrália , Mudança Climática , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodosRESUMO
A key part of native forest management in designated wood production areas is identifying locations which must be exempt from logging. Forest laws, government regulations, and codes of practice specify where logging is and is not permitted. Assessing compliance with these regulations is critical but can be expensive and time consuming, especially if it entails field measurements. In some cases, spatial data products may help reduce the costs and increase the transparency of assessing compliance. However, different spatial products can vary in their accuracy and resolution, leading to uncertainty in forest management. We present the results of a detailed case study investigating the compliance of logging operations with laws preventing cutting on slopes exceeding 30°. We focused on two designated water catchments in the Australian State of Victoria which supply water to the city of Melbourne. We compared slopes that had been logged on steep terrain using spatial data based on a Digital Elevation Model (DEM) derived from LiDAR, a 1 arc second DEM derived from the Shuttle Radar Topography Mission, and a Digital Terrain Model (DTM) with a resolution of 10m. While our analyses revealed differences in slope measurements among the different spatial products, all three datasets (and the on-site slope measurements) estimated the occurrence of widespread logging of forests on slopes >30° in both water catchments. We found the lowest resolution Shuttle Radar Topography Mission DEM underestimated the steepness of slopes, whilst the DTM was variable in its estimates. As expected, the LiDAR generated slope calculations provided the best fit with on-site measurements. Our study demonstrates the value of spatial data products in assessing compliance with logging laws and codes of practice. We suggest that LiDAR DEMs, and DTMs also can be useful in proactive forest planning and management by helping better identify which areas should be exempt from cutting before logging operations commence.
Assuntos
Florestas , Radar , Austrália , ÁguaRESUMO
Understanding the responses of rare species to altered fire disturbance regimes is an ongoing challenge for ecologists. We asked: are there associations between fire regimes and plant rarity across different vegetation communities? We combined 62 years of fire history records with vegetation surveys of 86 sites across three different dry sclerophyll vegetation communities in Booderee National Park, south-east Australia to: (1) compare associations between species richness and rare species richness with fire regimes, (2) test whether fire regimes influence the proportion of rare species present in an assemblage, and (3) examine whether rare species are associated with particular fire response traits and life history. We also sought to determine if different rarity categorisations influence the associations between fire regimes and plant rarity. We categorised plant rarity using three standard definitions; species' abundance, species' distribution, and Rabinowitz's measure of rarity, which considers a species' abundance, distribution and habitat specificity. We found that total species richness was negatively associated with short fire intervals but positively associated with time since fire and fire frequency in woodland communities. Total species richness was also positively associated with short fire intervals in forest communities. However, rare species richness was not associated with fire when categorised via abundance or distribution. Using Rabinowitz's measure of rarity, the proportion of rare species present was negatively associated with fire frequency in forest communities but positively associated with fire frequency in woodland communities. We found that rare species classified by all three measures of rarity exhibited no difference in fire response traits and serotiny compared to species not classified as rare. Rare species based on abundance differed to species not classified as rare across each life history category, while species rare by distribution differed in preferences for seed storage location. Our findings suggest that species categorised as rare by Rabinowitz's definition of rarity are the most sensitive to the effects of fire regimes. Nevertheless, the paucity of responses observed between rare species with fire regimes in a fire-prone ecosystem suggests that other biotic drivers may play a greater role in influencing the rarity of a species in this system.
Assuntos
Ecossistema , Incêndios , Biodiversidade , Florestas , PlantasRESUMO
Agricultural practices have created tens of millions of small artificial water bodies ("farm dams" or "agricultural ponds") to provide water for domestic livestock worldwide. Among freshwater ecosystems, farm dams have some of the highest greenhouse gas (GHG) emissions per m2 due to fertilizer and manure run-off boosting methane production-an extremely potent GHG. However, management strategies to mitigate the substantial emissions from millions of farm dams remain unexplored. We tested the hypothesis that installing fences to exclude livestock could reduce nutrients, improve water quality, and lower aquatic GHG emissions. We established a large-scale experiment spanning 400 km across south-eastern Australia where we compared unfenced (N = 33) and fenced farm dams (N = 31) within 17 livestock farms. Fenced farm dams recorded 32% less dissolved nitrogen, 39% less dissolved phosphorus, 22% more dissolved oxygen, and produced 56% less diffusive methane emissions than unfenced dams. We found no effect of farm dam management on diffusive carbon dioxide emissions and on the organic carbon in the soil. Dissolved oxygen was the most important variable explaining changes in carbon fluxes across dams, whereby doubling dissolved oxygen from 5 to 10 mg L-1 led to a 74% decrease in methane fluxes, a 124% decrease in carbon dioxide fluxes, and a 96% decrease in CO2 -eq (CH4 + CO2 ) fluxes. Dams with very high dissolved oxygen (>10 mg L-1 ) showed a switch from positive to negative CO2 -eq. (CO2 + CH4 ) fluxes (i.e., negative radiative balance), indicating a positive contribution to reduce atmospheric warming. Our results demonstrate that simple management actions can dramatically improve water quality and decrease methane emissions while contributing to more productive and sustainable farming.
Assuntos
Gases de Efeito Estufa , Metano , Animais , Dióxido de Carbono/análise , Ecossistema , Fazendas , Gases de Efeito Estufa/análise , Gado , Metano/análise , Óxido Nitroso/análise , Oxigênio , Qualidade da ÁguaRESUMO
Quantifying the factors associated with the presence and abundance of species is critical for conservation. Here, we quantify the factors associated with the occurrence of the Southern Greater Glider in the forests of the Central Highlands of Victoria, south-eastern Australia. We gathered counts of animals along transects and constructed models of the probability of absence, and then the abundance if animals were present (conditional abundance), based on species' associations with forest type, forest age, the abundance of denning sites in large old hollow-bearing trees, climatic conditions, and vegetation density. We found evidence of forest type effects, with animals being extremely uncommon in Alpine Ash and Shining Gum forest. In Mountain Ash forest, we found a negative relationship between the abundance of hollow-bearing trees and the probability of Southern Greater Glider absence. We also found a forest age effect, with the Southern Greater Glider completely absent from the youngest sites that were subject to a high-severity, stand-replacing wildfire in 2009. The best fitting conditional abundance model for the Southern Greater Glider included a strong positive effect of elevation; the species was more abundant in Mountain Ash forests at higher elevations. Our study highlights the importance of sites with large old hollow-bearing trees for the Southern Greater Glider, although such trees are in rapid decline in Mountain Ash forests. The influence of elevation on conditional abundance suggests that areas at higher elevations will be increasingly important for the conservation of the species, except where Mountain Ash forest is replaced by different tree species that may be unsuitable for the Southern Greater Glider.
Assuntos
Florestas , Incêndios Florestais , Animais , VitóriaRESUMO
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post-fire herbivory is needed to better manage natural environments. We investigated the effects of post-fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post-fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore-mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species-rich understory plant community. Future research should aim to determine how vegetation change from post-fire herbivory contributes to future fire risk.
RESUMO
In many farming landscapes, aquatic features, such as wetlands, creeks, and dams, provide water for stock and irrigation, while also acting as habitat for a range of plants and animals. Indeed, some species threatened by land-use change may otherwise be considerably rarer-or even suffer extinction-in the absence of these habitats. Therefore, a critical issue for the maintenance of biodiversity in agricultural landscapes is the extent to which the management of aquatic systems can promote the integration of agricultural production and biodiversity conservation. We completed a cross-sectional study in southern New South Wales (southeastern Australia) to quantify the efficacy of two concurrently implemented management practices-partial revegetation and control of livestock grazing-aimed at enhancing the vegetation structure, biodiversity value, and water quality of farm dams. We found that excluding livestock for even short periods resulted in increased vegetation cover. Relative to unenhanced dams (such as those that remained unfenced), those that had been enhanced for several years were characterized by reduced levels of turbidity, nutrients, and fecal contamination. Enhanced dams also supported increased richness and abundance of macroinvertebrates. In contrast, unenhanced control dams tended to have high abundance of a few macroinvertebrate taxa. Notably, differences remained between the macroinvertebrate assemblages of enhanced dams and nearby "natural" waterbodies that we monitored as reference sites. While the biodiversity value of semilotic, natural waterbodies in the region cannot be replicated by artificial lentic systems, we consider the extensive system of farm dams in the region to represent a novel ecosystem that may nonetheless support some native macroinvertebrates. Our results show that management interventions such as fencing and grazing control can improve water quality in farm dams, improve vegetation structure around farm dams, and support greater abundance and diversity of aquatic macroinvertebrates.
RESUMO
Extremely old trees have important roles in providing insights about historical climatic events and supporting cultural values. Yet there has been limited work on the global distribution and conservation of these trees. We extracted information on 197,855 tree cores at 4,854 sites, and combined it with other tree age data from a further 156 sites, to determine the age of the world's oldest trees and quantify the factors influencing their global distribution. We found that extremely old trees >1,000 years are rare. Among 30 individual trees that exceeded 2,000 years old, 27 occurred in high mountains. Our model suggests that many of the existing oldest trees occur in high-elevation, cold and arid mountains with limited human disturbance. This pattern is markedly different from that of the tallest trees, which are more likely to occur in more mesic and productive locations. Global warming and expansion of human activities may induce rapid population declines of extremely old trees. New strategies, including targeted establishment of conservation reserves in remote regions, especially those in western Table 1 parts of China and USA, are required to protect these trees. This article is protected by copyright. All rights reserved.
RESUMO
Feral Apis mellifera colonies are widespread globally and cause ecological impacts as pollinators and competitors for food and nesting opportunities. The magnitude of impact depends on their population density, but knowledge of this density is poor. We document feral A. mellifera colonies at 69 per km2 in fragmented Eucalyptus woodlands in Australia, exceeding estimates from elsewhere in the world, and matched only by one other Australian study. We surveyed 52.5 ha of woodland patches with 357 nest boxes installed to provide nesting opportunities for threatened vertebrates. Our sites covered a region of more than 140 km across with repeated surveys over 3 to 6 years. We show that nest box use by feral A. mellifera colonies is influenced by box design (p = 0.042), with weak evidence for an interactive effect of type of vegetation at a site (woodland remnants vs. replanting) and woody cover within 500 m (p = 0.091). At 69 colonies per km2, this density is equivalent to the recommended stocking of hives for pollination of some crops and is therefore likely to influence pollination and lead to competition with other flower visitors. Apis mellifera is also likely to be competing for hollows with cavity dependent native fauna, especially in landscapes where there has been extensive tree removal.
Assuntos
Flores , Polinização , Animais , Austrália , Abelhas , FlorestasRESUMO
Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.