Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 277, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110481

RESUMO

Understanding the behaviour of active catalyst sites at the atomic level is crucial for optimizing catalytic performance. Here, the evolution of Pt and Cu dopants in Au25 clusters on CeO2 supports is investigated in the water-gas shift (WGS) reaction, using operando XAFS and DRIFTS. Different behaviour is observed for the Cu and Pt dopants during the pretreatment and reaction. The Cu migrates and builds clusters on the support, whereas the Pt creates single-atom active sites on the surface of the cluster, leading to better performance. Doping with both metals induces strong interactions and pretreatment and reaction conditions lead to the growth of the Au clusters, thereby affecting their catalytic behaviour. This highlights importance of understanding the behaviour of atoms at different stages of catalyst evolution. These insights into the atomic dynamics at the different stages are crucial for the precise optimisation of catalysts, which ultimately enables improved catalytic performance.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1055-1070, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289717

RESUMO

Perovskite-type oxide materials (nominal composition ABO3) are a very versatile class of materials, and their properties are tuneable by varying and doping A- and B-site cations. When the B-site contains easily reducible cations (e.g. Fe, Co or Ni), these can exsolve under reducing conditions and form metallic nanoparticles on the surface. This process is very interesting as a novel route for the preparation of catalysts, since oxide surfaces decorated with finely dispersed catalytically active (often metallic) nanoparticles are a key requirement for excellent catalyst performance. Five doped perovskites, namely, La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ and Nd0.6Ca0.4Fe0.9Co0.1O3-δ, have been synthesized and characterized by experimental and theoretical methods with respect to their crystal structures, electronic properties, morphology and exsolution behaviour. All are capable of exsolving Fe and/or Co. Special emphasis has been placed on the influence of the A-site elemental composition on structure and exsolution capability. Using Nd instead of La increased structural distortions and, at the same time, hindered exsolution. Increasing the amount of Ca doping also increased distortions and additionally changed the Fe oxidation states, resulting in exsolution being shifted to higher temperatures as well. Using the easily reducible element Co as the B-site dopant significantly facilitated the exsolution process and led to much smaller and homogeneously distributed exsolved particles. Therefore, the Co-doped perovskite is a promising material for applications in catalysis, even more so as Co is catalytically a highly active element. The results show that fine-tuning of the perovskite composition will allow tailored exsolution of nanoparticles, which can be used for highly sophisticated catalyst design.

3.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 10): 1520-1522, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29250371

RESUMO

Single crystals of the title compound, Na(H2AsO4), were obtained by partial neutralization of arsenic acid with sodium hydroxide in aqueous solution. The crystal structure of Na(H2AsO4) is isotypic with the phosphate analogue and the asymmetric unit consists of two sodium cations and two tetra-hedral H2AsO4- anions. Each of the sodium cations is surrounded by six O atoms of five H2AsO4- groups, defining distorted octa-hedral coordination spheres. In the extended structure, the sodium cations and di-hydrogen arsenate anions are arranged in the form of layers lying parallel to (010). Strong hydrogen bonds [range of O⋯O distances 2.500 (3)-2.643 (3) Å] between adjacent H2AsO4- anions are observed within and perpendicular to the layers. The isotypic structure of Na(H2PO4) is comparatively discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA