Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(47): 19814-19818, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179492

RESUMO

Peptide-based biomimetic nanostructures and metal-organic coordination networks on surfaces are two promising classes of hybrid materials which have been explored recently. However, despite the great versatility and structural variability of natural and synthetic peptides, the two directions have so far not been merged in fabrication of metal-organic coordination networks using peptides as building blocks. Here we demonstrate that cyclic peptides can be used as ligands to form highly ordered, two-dimensional, peptide-based metal-organic coordination networks. The networks are formed on a Au(111) surface through coadsorption of cyclic dialanine with Cu-adatoms under Ultra-High Vacuum (UHV) conditions. Scanning Tunneling Microscopy (STM) in combination with X-ray Photoelectron spectroscopy (XPS) has been utilized to characterize the network structures at submolecular resolution and expound the chemical changes involved in network coordination. The networks involve a motif of three cyclic dialanine molecules coordinating to a central Cu-adatom. Interestingly the networks expose pores functionalized by the side chain of the cyclic peptide, suggesting a general method to form functionalized porous metal-organic networks on surfaces.


Assuntos
Estruturas Metalorgânicas/química , Peptídeos Cíclicos/química , Cobre/química , Dipeptídeos/química , Ouro/química , Microscopia de Tunelamento , Espectroscopia Fotoeletrônica , Porosidade , Propriedades de Superfície
2.
Chem Commun (Camb) ; 54(64): 8845-8848, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30039145

RESUMO

Using a combination of UHV-STM and molecular mechanics calculations, we investigate the surface self-assembly of a complex multi-component metal-molecule system with synergistic non-covalent interactions. Hydrogen bonding between three-dimensional Lander-DAT molecules and planar PTCDI molecules, adsorbed closer to the surface, is found to be facilitated by electrostatic interactions between co-adsorbed Ni adatoms and the flexible molecular DAT groups.

3.
Langmuir ; 33(41): 10782-10791, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28968110

RESUMO

Molecular conformational flexibility can play an important role in supramolecular self-assembly on surfaces, affecting not least chiral molecular assemblies. To explicitly and systematically investigate the role of molecular conformational flexibility in surface self-assembly, we synthesized a three-bit conformational switch where each of three switching units on the molecules can assume one of two distinct binary positions on the surface. The molecules are designed to promote C-H···N type hydrogen bonds between the switching units. While supramolecular self-assembly based on strong hydrogen-bonding interactions has been widely explored, less is known about the role of such weaker directional interactions for surface self-assembly. The synthesized molecules consist of three nitrogen-containing isoquinoline (IQ) bits connected by ethynylene spokes and terminated by tert-butyl (tBu) groups. Using high-resolution scanning tunnelling microscopy, we investigate the self-assembly of the IQ-tBu molecules on a Au(111) surface under ultrahigh-vacuum conditions. The molecules form extended domains of brick-wall structure where the molecular backbones are packed regularly but without selection of specific molecular conformations. However, statistical analysis of the extended network demonstrates alignment/correlation for the orientations of the switching units indicating specific interactions. The primary interaction motifs in the structure are quantified from DFT calculations, showing that the brick-wall structure is indeed stabilized by two types of weak C-H···N bonds, involving either aromatic hydrogens on the IQ groups or nonaromatic hydrogens on the tBu groups. Analysis of the C-H···N interactions in the brick-wall structure explains the observed distribution and alignment of molecular conformations as well as the overall organization of the molecular surface structures.

7.
ACS Nano ; 11(9): 9397-9404, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28809530

RESUMO

To discern the catalytic activity of different active sites, a self-assembly strategy is applied to confine the involved species that are "attached" to specific surface sites. The employed probe reaction system is the Ullmann coupling of 4-bromobiphenyl, C6H5C6H4Br, on an atomically flat Ag(111) surface, which is explored by combined scanning tunneling microscopy, synchrotron X-ray photoelectron spectroscopy, and density functional theory calculations. The catalytic cycle involves the detachment of the Br atom from the initial reactant to form an organometallic intermediate, C6H5C6H4AgC6H4C6H5, which subsequently self-assembles with its central Ag atom residing either on 2-fold bridge or 3-fold hollow sites at full coverage. The hollow site turns out to be catalytically more active than the bridge one, allowing us to achieve site-steered reaction control from the intermediate to the final coupling product, p-quaterphenyl, at 390 and 410 K, respectively.

8.
ACS Nano ; 11(8): 8302-8310, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28762721

RESUMO

Interaction forces between aromatic moieties, often referred to as π-π interactions, are an important element in stabilizing complex supramolecular structures. For supramolecular self-assembly occurring on surfaces, where aromatic moieties are typically forced to adsorb coplanar with the surface, the possible role of intermolecular aromatic interactions is much less explored. Here, we report on unusual, ring-shaped supramolecular corral surface structures resulting from adsorption of a molecule with nonplanar structure, allowing for intermolecular aromatic interactions. The discrete corral structures are observed using high-resolution scanning tunneling microscopy, and the energetic driving forces for their formation are elucidated using density functional theory calculations and Monte Carlo simulations. The individual corrals involve between 11 and 18 molecules bound through triazole moieties to a ring-shaped ensemble of bridge site positions on (111) surfaces of copper, silver, or gold. The curvature required to form the corrals is identified to result from the angle dependence of aromatic interactions between molecular phenanthrene moieties. The study provides detailed quantitative insights into triazole-surface and aromatic interactions and illustrates how they may be used to drive surface supramolecular self-assembly.

9.
Chem Commun (Camb) ; 53(6): 1168-1171, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28054080

RESUMO

A phenylene vinylene polymer derivative is deposited onto a Au(111) surface under Ultra-High Vacuum (UHV) conditions using electrospray ionisation deposition and characterised using Scanning Tunnelling Microscopy (STM). High resolution STM images reveal the polymer structure on the monomeric scale, allowing the identification of regioisomerism, the intricate isomerisations of the polymer side-chains, as well as the larger-scale topologies of the polymer strands.

10.
Angew Chem Int Ed Engl ; 53(47): 12955-9, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25251167

RESUMO

Surface coordination networks formed by co-adsorption of metal atoms and organic ligands have interesting properties, for example regarding catalysis and data storage. Surface coordination networks studied to date have typically been based on single metal atom centers. The formation of a novel surface coordination network is now demonstrated that is based on network nodes in the form of clusters consisting of three Cu adatoms. The network forms by deposition of tetrahydroxybenzene (THB) on Cu(111) under UHV conditions. As shown from a combination of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations, all four hydroxy groups of THB dehydrogenate upon thermal activation at 440 K. This highly reactive ligand binds to Cu adatom trimers, which are resolved by high-resolution STM. The network creates an ordered array of mono-dispersed metal clusters constituting a two-dimensional analogue of metal-organic frameworks.

11.
ACS Nano ; 8(8): 8074-81, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24960454

RESUMO

Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data, we demonstrate successful chiral induction with a very low concentration of seeding molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules.

12.
Chem Commun (Camb) ; 49(77): 8665-7, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23949003

RESUMO

Sublimation of Tetra-Amino Benzene (TAB) in its tetrahydrochlorinated form onto Cu(111) leads to the formation of long range ordered structures consisting of TAB molecules with partially protonated amino groups interspersed with Cl species.

13.
J Am Chem Soc ; 135(6): 2136-9, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23360358

RESUMO

Using scanning tunneling microscopy, we demonstrate that the 1,3-dipolar cycloaddition between a terminal alkyne and an azide can be performed under solvent-free ultrahigh vacuum conditions with reactants adsorbed on a Cu(111) surface. XPS shows significant degradation of the azide upon adsorption, which is found to be the limiting factor for the reaction.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Adsorção , Ciclização , Estrutura Molecular , Propriedades de Superfície , Vácuo
14.
ACS Nano ; 6(8): 6882-9, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22779709

RESUMO

Many severe diseases are associated with amyloid fibril deposits in the body caused by protein misfolding. Structural information on amyloid fibrils is accumulating rapidly, but little is known about the assembly of peptides into fibrils at the level of individual molecules. Here we investigate self-assembly of the fibril-forming tetrapeptides KFFE and KVVE on a gold surface under ultraclean vacuum conditions using scanning tunneling microscopy. Combined with restrained molecular dynamics modeling, we identify peptide arrangements with interesting similarities to fibril structures. By resolving individual peptide residues and revealing conformational heterogeneities and dynamics, we demonstrate how conformational correlations may be involved in cooperative fibril growth. Most interestingly, intermolecular interactions prevail over intramolecular interactions, and assembly of the phenyl-rich KFFE peptide appears not to be dominated by π-π interactions. This study offers interesting perspectives for obtaining fundamental single-molecule insights into fibril formation using a surface science approach to study idealized model systems.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Microscopia de Tunelamento/métodos , Modelos Químicos , Modelos Moleculares , Imagem Molecular/métodos , Sítios de Ligação , Simulação por Computador , Dimerização , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica
15.
J Am Chem Soc ; 133(35): 13910-3, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21830788

RESUMO

It is demonstrated by scanning tunneling microscopy that coadsorption of a molecular chiral switch with a complementary, intrinsically chiral induction seed on the Au(111) surface leads to the formation of globally homochiral molecular assemblies.


Assuntos
Ouro/química , Microscopia de Tunelamento , Estereoisomerismo , Propriedades de Superfície
16.
ACS Nano ; 5(8): 6651-60, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21749154

RESUMO

Xanthine molecule is an intermediate in nucleic acid degradation from the deamination of guanine and is also a compound present in the ancient solar system that is found in high concentrations in extraterrestrial meteorites. The self-assembly of xanthine molecules on inorganic surfaces is therefore of interest for the study of biochemical processes, and it may also be relevant to the fundamental understanding of prebiotic biosynthesis. Using a combination of high-resolution scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, two new homochiral xanthine structures have been found on Au(111) under ultrahigh vacuum conditions. Xanthine molecules are found to be self-assembled into two extended homochiral networks tiled by two types of di-pentamer units and stabilized by intermolecular double hydrogen bonding. Our findings indicate that the deamination of guanine into xanthine leads to a very different base pairing potential and the chemical properties of the base which may be of relevance to the function of the cell and potential development of human diseases. Moreover, the adsorption of xanthine molecules on inorganic surfaces leading to homochiral assemblies may be of interest for the fundamental understanding of the emerged chirality at early stages of life.

17.
J Am Chem Soc ; 133(13): 4896-905, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21401127

RESUMO

Chiral self-assembled structures formed from organic molecules adsorbed on surfaces have been the subject of intense investigation in the recent decade, owing both to relevance in applications such as enantiospecific heterogeneous catalysis or chiral separation as well as to fundamental interest, for example, in relation to the origin of biomolecular homochirality. A central target is rational design of molecular building blocks allowing transfer of chirality from the molecular to the supramolecular level. We previously studied the surface self-assembly of a class of linear compounds based on an oligo(phenylene ethynylene) backbone, which were shown to form a characteristic windmill adsorption pattern on the Au(111) surface. However, since these prochiral compounds were intrinsically achiral, domains with oppositely oriented windmill motifs and related conformational surface enantiomers were always realized in equal proportion. Here we report on the enantioselective, high yield chemical synthesis of a structurally related but intrinsically chiral compound in which two peripheral tert-butyl substituents are replaced by sec-butyl groups, each containing an (S) chiral center. Using scanning tunneling microscopy under ultrahigh vacuum conditions, we characterize the adsorption structures formed from this compound on the Au(111) surface. The perturbation introduced by the modified molecular design is found to be sufficiently small so structures form that are closely analogous to those observed for the original tert-butyl substituted compound. However, as demonstrated from careful statistical analysis of high-resolution STM images, the introduction of the two chiral (S)-sec-butyl substituents leads to a strong preference for windmill motifs with one orientation, demonstrating control of the chiral organization of the molecular backbones through rational molecular design.


Assuntos
Ouro/química , Adsorção , Alcinos/química , Éteres/química , Estrutura Molecular , Estereoisomerismo , Propriedades de Superfície
19.
Langmuir ; 26(24): 18841-51, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090821

RESUMO

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic-inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of L- and D-enantiomers aggregate into superstructures with chiral (-1 ∓2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and ß-OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.


Assuntos
Cobre/química , Serina/química , Elétrons , Microscopia de Tunelamento , Modelos Moleculares , Conformação Molecular , Espectroscopia Fotoeletrônica , Estereoisomerismo , Propriedades de Superfície , Temperatura , Espectroscopia por Absorção de Raios X
20.
J Am Chem Soc ; 132(45): 15927-9, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20977223

RESUMO

In this study, through the choice of the well-known G-K biological coordination system, bioligand-alkali metal coordination has for the first time been brought onto an inert Au(111) surface. Using the interplay between high-resolution scanning tunneling microscopy and density functional theory calculations, we show that the mobile G molecules on Au(111) can effectively coordinate with the K atoms, resulting in a metallosupramolecular porous network that is stabilized by a delicate balance between hydrogen bonding and metal-organic coordination.


Assuntos
Ouro/química , Guanina/química , Potássio/química , Ligantes , Microscopia de Tunelamento , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA