Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7048-7067, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630165

RESUMO

Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.


Assuntos
Antivirais , Catepsina L , SARS-CoV-2 , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/síntese química , Cristalografia por Raios X , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Modelos Moleculares
2.
Commun Biol ; 6(1): 1058, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853179

RESUMO

Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin's efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Catepsinas , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Inibidores de Proteases/farmacologia , Cisteína Endopeptidases/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858965

RESUMO

SecA protein is a major component of the general bacterial secretory system. It is an ATPase that couples nucleotide hydrolysis to protein translocation. In some Gram-positive pathogens, a second paralogue, SecA2, exports a different set of substrates, usually virulence factors. To identify SecA2 features different from SecA(1)s, we determined the crystal structure of SecA2 from Clostridioides difficile, an important nosocomial pathogen, in apo and ATP-γ-S-bound form. The structure reveals a closed monomer lacking the C-terminal tail (CTT) with an otherwise similar multidomain organization to its SecA(1) homologues and conserved binding of ATP-γ-S. The average in vitro ATPase activity rate of C. difficile SecA2 was 2.6 ± 0.1 µmolPi/min/µmol. Template-based modeling combined with evolutionary conservation analysis supports a model where C. difficile SecA2 in open conformation binds the target protein, ensures its movement through the SecY channel, and enables dimerization through PPXD/HWD cross-interaction of monomers during the process. Both approaches exposed regions with differences between SecA(1) and SecA2 homologues, which are in agreement with the unique adaptation of SecA2 proteins for a specific type of substrate, a role that can be addressed in further studies.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Clostridioides difficile/enzimologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clostridioides difficile/química , Clostridioides difficile/genética , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Conformação Proteica
4.
Structure ; 25(3): 514-521, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28132783

RESUMO

Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins.


Assuntos
Proteínas de Bactérias/química , Parede Celular/metabolismo , Clostridioides difficile/metabolismo , Sítios de Ligação , Clostridioides difficile/química , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
5.
Retrovirology ; 10: 156, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24344916

RESUMO

BACKGROUND: The role of AID/APOBEC proteins in the mammalian immune response against retroviruses and retrotransposons is well established. G to A hypermutations, the hallmark of their cytidine deaminase activity, are present in several mammalian retrotransposons. However, the role of AID/APOBEC proteins in non-mammalian retroelement restriction is not completely understood. RESULTS: Here we provide the first evidence of anti-retroelement activity of a reptilian APOBEC protein. The green anole lizard A1 protein displayed potent DNA mutator activity and inhibited ex vivo retrotransposition of LINE1 and LINE2 ORF1 protein encoding elements, displaying a mechanism of action similar to that of the human A1 protein. In contrast, the human A3 proteins did not require ORF1 protein to inhibit LINE retrotransposition, suggesting a differential mechanism of anti-LINE action of A1 proteins, which emerged in amniotes, and A3 proteins, exclusive to placental mammals. In accordance, genomic analyses demonstrate differential G to A DNA editing of LINE retrotransposons in the lizard genome, which is also the first evidence for G to A DNA editing in non-mammalian genomes. CONCLUSION: Our data suggest that vertebrate APOBEC proteins differentially inhibit the retrotransposition of LINE elements and that the anti-retroelement activity of APOBEC proteins predates mammals.


Assuntos
Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , Retroelementos/imunologia , Vertebrados/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA