Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
EBioMedicine ; 73: 103652, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740109

RESUMO

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Antibacterianos/uso terapêutico , Concentração de Íons de Hidrogênio , Nebramicina/análogos & derivados , Pielonefrite/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Nebramicina/farmacologia , Nebramicina/uso terapêutico , Pielonefrite/etiologia , Ratos , Resultado do Tratamento , Infecções Urinárias/etiologia
2.
J Autoimmun ; 42: 62-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23265639

RESUMO

Autoimmune polyendocrine syndrome Type I (APS I) results in multiple endocrine organ destruction and is caused by mutations in the Autoimmune regulator gene (AIRE). In the thymic stroma, cells expressing the AIRE gene dictate T cell education and central tolerance. Although this function is the most studied, AIRE is also expressed in the periphery in DCs and stromal cells. Still, how AIRE regulated transcription modifies cell behaviour in the periphery is largely unknown. Here we show that AIRE is specifically expressed by 33D1(+) DCs and dictates the fate of antibody secreting cell movement within the spleen. We also found that AIRE expressing 33D1(+) DCs expresses self-antigens as exemplified by the hallmark gene insulin. Also, as evidence for a regulatory function, absence of Aire in 33D1(+) DCs led to reduced levels of the chemokine CXCL12 and increased co-stimulatory properties. This resulted in altered activation and recruitment of T-follicular helper cells and germinal centre B cells. The altered balance leads to a change of the early response to a T cell-dependent antigen in Aire(-/-) mice. These findings add to the understanding of how specific DC subtypes regulate the early responses during T cell-dependent antibody responses within the spleen and further define the role of AIRE in the periphery as regulator of self-antigen expression and lymphocyte migration.


Assuntos
Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Poliendocrinopatias Autoimunes/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/metabolismo , Imunidade Adaptativa/genética , Animais , Formação de Anticorpos/genética , Movimento Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Tolerância Imunológica/genética , Insulina/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/genética , Proteína AIRE
3.
Proc Natl Acad Sci U S A ; 105(47): 18466-71, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19011083

RESUMO

Autoimmune polyendocrine syndrome type I (APS I) results in multiple endocrine organ destruction and is caused by mutations in the autoimmune regulator gene (AIRE). APS I is characterized by circulating tissue-specific autoantibodies, and the presence of these antibodies is often predictive of organ destruction. The importance of AIRE in ensuring central tolerance by regulating the negative selection of autoreactive T cells has been shown clearly. However, in Aire(-/-) mice the phenotype (i.e., autoantibodies, liver infiltrates of B cells, splenomegaly, and marginal zone B-cell lymphoma) is predominantly B-cell mediated, suggesting an exaggerated activation of B cells. We have studied T-cell-independent B-cell responses in the absence of AIRE and found that Aire(-/-) mice have an increased response against T-cell-independent type II antigens. We linked this exaggerated response to the elevated serum levels of the B-cell-activating factor of the TNF family (BAFF) that were found both in APS I patients and in Aire(-/-) mice. Transfer of Aire(-/-) bone marrow into irradiated nude mice resulted in increased percentage of BAFF-expressing antigen-presenting cells compared with wt bone marrow, suggesting a T-cell-independent mechanism behind our findings. Furthermore, in vitro experiments showed that AIRE-deficient murine bone marrow-derived dendritic cells produced significantly more BAFF than wt cells when stimulated with IFN-gamma but not when stimulated with IL-10. Our results suggest a cell-intrinsic role for AIRE in peripheral dendritic cells by regulating IFN-gamma-receptor signaling and point toward complementary mechanisms by which AIRE is involved in maintaining tolerance.


Assuntos
Fator Ativador de Células B/fisiologia , Linfócitos B/imunologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Autoantígenos/imunologia , Fator Ativador de Células B/sangue , Sequência de Bases , Proliferação de Células , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Receptores de Interferon/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA