Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2313370121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985769

RESUMO

Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.


Assuntos
Proteínas de Choque Térmico HSP70 , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Histona Desmetilases com o Domínio Jumonji , Proteostase , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteostase/fisiologia , Retroalimentação Fisiológica , Adaptação Fisiológica , Células HEK293 , Estresse Proteotóxico
2.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496508

RESUMO

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

3.
Cell ; 185(12): 2035-2056.e33, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688132

RESUMO

Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Doença de Parkinson/metabolismo , Corpos de Processamento , Estabilidade de RNA , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Sci Adv ; 8(11): eabj6526, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294249

RESUMO

Heat shock factor 1 (HSF1) is well known for its role in the heat shock response (HSR), where it drives a transcriptional program comprising heat shock protein (HSP) genes, and in tumorigenesis, where it drives a program comprising HSPs and many noncanonical target genes that support malignancy. Here, we find that HSF2, an HSF1 paralog with no substantial role in the HSR, physically and functionally interacts with HSF1 across diverse types of cancer. HSF1 and HSF2 have notably similar chromatin occupancy and regulate a common set of genes that include both HSPs and noncanonical transcriptional targets with roles critical in supporting malignancy. Loss of either HSF1 or HSF2 results in a dysregulated response to nutrient stresses in vitro and reduced tumor progression in cancer cell line xenografts. Together, these findings establish HSF2 as a critical cofactor of HSF1 in driving a cancer cell transcriptional program to support the anabolic malignant state.

5.
Leukemia ; 35(9): 2469-2481, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127794

RESUMO

Eukaryotic initiation factor 4A (eIF4A), the enzymatic core of the eIF4F complex essential for translation initiation, plays a key role in the oncogenic reprogramming of protein synthesis, and thus is a putative therapeutic target in cancer. As important component of its anticancer activity, inhibition of translation initiation can alleviate oncogenic activation of HSF1, a stress-inducible transcription factor that enables cancer cell growth and survival. Here, we show that primary acute myeloid leukemia (AML) cells exhibit the highest transcript levels of eIF4A1 compared to other cancer types. eIF4A inhibition by the potent and specific compound rohinitib (RHT) inactivated HSF1 in these cells, and exerted pronounced in vitro and in vivo anti-leukemia effects against progenitor and leukemia-initiating cells, especially those with FLT3-internal tandem duplication (ITD). In addition to its own anti-leukemic activity, genetic knockdown of HSF1 also sensitized FLT3-mutant AML cells to clinical FLT3 inhibitors, and this synergy was conserved in FLT3 double-mutant cells carrying both ITD and tyrosine kinase domain mutations. Consistently, the combination of RHT and FLT3 inhibitors was highly synergistic in primary FLT3-mutated AML cells. Our results provide a novel therapeutic rationale for co-targeting eIF4A and FLT3 to address the clinical challenge of treating FLT3-mutant AML.


Assuntos
Antineoplásicos/farmacologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Humanos , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular
6.
Sci Transl Med ; 13(583)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658354

RESUMO

The E4 allele of the apolipoprotein E gene (APOE) has been established as a genetic risk factor for many diseases including cardiovascular diseases and Alzheimer's disease (AD), yet its mechanism of action remains poorly understood. APOE is a lipid transport protein, and the dysregulation of lipids has recently emerged as a key feature of several neurodegenerative diseases including AD. However, it is unclear how APOE4 perturbs the intracellular lipid state. Here, we report that APOE4, but not APOE3, disrupted the cellular lipidomes of human induced pluripotent stem cell (iPSC)-derived astrocytes generated from fibroblasts of APOE4 or APOE3 carriers, and of yeast expressing human APOE isoforms. We combined lipidomics and unbiased genome-wide screens in yeast with functional and genetic characterization to demonstrate that human APOE4 induced altered lipid homeostasis. These changes resulted in increased unsaturation of fatty acids and accumulation of intracellular lipid droplets both in yeast and in APOE4-expressing human iPSC-derived astrocytes. We then identified genetic and chemical modulators of this lipid disruption. We showed that supplementation of the culture medium with choline (a soluble phospholipid precursor) restored the cellular lipidome to its basal state in APOE4-expressing human iPSC-derived astrocytes and in yeast expressing human APOE4 Our study illuminates key molecular disruptions in lipid metabolism that may contribute to the disease risk linked to the APOE4 genotype. Our study suggests that manipulating lipid metabolism could be a therapeutic approach to help alleviate the consequences of carrying the APOE4 allele.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E , Homeostase , Humanos , Neuroglia
7.
Cell Rep ; 33(1): 108224, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027662

RESUMO

The ε4 allele of apolipoprotein E (APOE4) is a genetic risk factor for many diseases, including late-onset Alzheimer's disease (AD). We investigate the cellular consequences of APOE4 in human iPSC-derived astrocytes, observing an endocytic defect in APOE4 astrocytes compared with their isogenic APOE3 counterparts. Given the evolutionarily conserved nature of endocytosis, we built a yeast model to identify genetic modifiers of the endocytic defect associated with APOE4. In yeast, only the expression of APOE4 results in dose-dependent defects in both endocytosis and growth. We discover that increasing expression of the early endocytic adaptor protein Yap1802p, a homolog of the human AD risk factor PICALM, rescues the APOE4-induced endocytic defect. In iPSC-derived human astrocytes, increasing expression of PICALM similarly reverses endocytic disruptions. Our work identifies a functional interaction between two AD genetic risk factors-APOE4 and PICALM-centered on the conserved biological process of endocytosis.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/metabolismo , Endocitose/fisiologia , Doença de Alzheimer/patologia , Humanos , Fatores de Risco
9.
Cell Rep ; 32(6): 108001, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783929

RESUMO

The heat shock protein 90 (Hsp90) chaperone functions as a protein-folding buffer and plays a role promoting the evolution of new heritable traits. To better understand how Hsp90 can affect mRNA translation, we screen more than 1,600 factors involved in mRNA regulation for physical interactions with Hsp90 in human cells. The mRNA binding protein CPEB2 strongly binds Hsp90 via its prion domain. In a yeast model, transient inhibition of Hsp90 results in persistent activation of a CPEB translation reporter even in the absence of exogenous CPEB that persists for 30 generations after the inhibitor is removed. Ribosomal profiling reveals that some endogenous yeast mRNAs, including HAC1, show a persistent change in translation efficiency following transient Hsp90 inhibition. Thus, transient loss of Hsp90 function can promote a nongenetic inheritance of a translational state affecting specific mRNAs, introducing a mechanism by which Hsp90 can promote phenotypic variation.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , RNA Mensageiro/metabolismo , Humanos , Biossíntese de Proteínas
10.
Nat Cell Biol ; 22(2): 151-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015439

RESUMO

Under proteotoxic stress, some cells survive whereas others die. The mechanisms governing this heterogeneity in cell fate remain unknown. Here we report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell-fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies called foci3-6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6-10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumours. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent but opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.


Assuntos
Adaptação Fisiológica/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transição de Fase , Transdução de Sinais , Análise de Célula Única , Transcrição Gênica
12.
Clin Cancer Res ; 25(21): 6392-6405, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31213460

RESUMO

PURPOSE: Despite the accumulation of extensive genomic alterations, many cancers fail to be recognized as "foreign" and escape destruction by the host immune system. Immunotherapies designed to address this problem by directly stimulating immune effector cells have led to some remarkable clinical outcomes, but unfortunately, most cancers fail to respond, prompting the need to identify additional immunomodulatory treatment options.Experimental Design: We elucidated the effect of a novel treatment paradigm using sustained, low-dose HSP90 inhibition in vitro and in syngeneic mouse models using genetic and pharmacologic tools. Profiling of treatment-associated tumor cell antigens was performed using immunoprecipitation followed by peptide mass spectrometry. RESULTS: We show that sustained, low-level inhibition of HSP90 both amplifies and diversifies the antigenic repertoire presented by tumor cells on MHC-I molecules through an IFNγ-independent mechanism. In stark contrast, we find that acute, high-dose exposure to HSP90 inhibitors, the only approach studied in the clinic to date, is broadly immunosuppressive in cell culture and in patients with cancer. In mice, chronic non-heat shock-inducing HSP90 inhibition slowed progression of colon cancer implants, but only in syngeneic animals with intact immune function. Addition of a single dose of nonspecific immune adjuvant to the regimen dramatically increased efficacy, curing a subset of mice receiving combination therapy. CONCLUSIONS: These highly translatable observations support reconsideration of the most effective strategy for targeting HSP90 to treat cancers and suggest a practical approach to repurposing current orally bioavailable HSP90 inhibitors as a new immunotherapeutic strategy.See related commentary by Srivastava and Callahan, p. 6277.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteostase/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/genética , Antígenos de Neoplasias/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/imunologia , Xenoenxertos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia/métodos , Camundongos
13.
Nat Chem Biol ; 15(7): 681-689, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133756

RESUMO

The mechanisms by which cells adapt to proteotoxic stress are largely unknown, but are key to understanding how tumor cells, particularly in vivo, are largely resistant to proteasome inhibitors. Analysis of cancer cell lines, mouse xenografts and patient-derived tumor samples all showed an association between mitochondrial metabolism and proteasome inhibitor sensitivity. When cells were forced to use oxidative phosphorylation rather than glycolysis, they became proteasome-inhibitor resistant. This mitochondrial state, however, creates a unique vulnerability: sensitivity to the small molecule compound elesclomol. Genome-wide CRISPR-Cas9 screening showed that a single gene, encoding the mitochondrial reductase FDX1, could rescue elesclomol-induced cell death. Enzymatic function and nuclear-magnetic-resonance-based analyses further showed that FDX1 is the direct target of elesclomol, which promotes a unique form of copper-dependent cell death. These studies explain a fundamental mechanism by which cells adapt to proteotoxic stress and suggest strategies to mitigate proteasome inhibitor resistance.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Inibidores de Proteassoma/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteassoma/química , Bibliotecas de Moléculas Pequenas/química
14.
Nat Commun ; 10(1): 402, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679438

RESUMO

New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.


Assuntos
Antifúngicos/farmacologia , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Linhagem Celular , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Compostos Heterocíclicos de 4 ou mais Anéis/antagonistas & inibidores , Humanos , Isoxazóis/antagonistas & inibidores , Camundongos , Modelos Moleculares , Chaperonas Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes , Resorcinóis/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Triazóis/antagonistas & inibidores , Virulência/efeitos dos fármacos
15.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30527540

RESUMO

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Assuntos
Antiparkinsonianos/farmacologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica/métodos , Neurônios/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Estearoil-CoA Dessaturase/antagonistas & inibidores , alfa-Sinucleína/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Degeneração Neural , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/patologia , Neurônios/enzimologia , Neurônios/patologia , Ácido Oleico/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ratos Sprague-Dawley , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/metabolismo , alfa-Sinucleína/genética
16.
Biochemistry ; 57(23): 3217-3221, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29553718

RESUMO

Despite purines making up one of the largest classes of metabolites in a cell, little is known about the regulatory mechanisms that facilitate efficient purine production. Under conditions resulting in high purine demand, enzymes within the de novo purine biosynthetic pathway cluster into multienzyme assemblies called purinosomes. Purinosome formation has been linked to molecular chaperones HSP70 and HSP90; however, the involvement of these molecular chaperones in purinosome formation remains largely unknown. Here, we present a new-found biochemical mechanism for the regulation of de novo purine biosynthetic enzymes mediated through HSP90. HSP90-client protein interaction assays were employed to identify two enzymes within the de novo purine biosynthetic pathway, PPAT and FGAMS, as client proteins of HSP90. Inhibition of HSP90 by STA9090 abrogated these interactions and resulted in a decrease in the level of available soluble client protein while having no significant effect on their interactions with HSP70. These findings provide a mechanism to explain the dependence of purinosome assembly on HSP90 activity. The combined efforts of molecular chaperones in the maturation of PPAT and FGAMS result in purinosome formation and are likely essential for enhancing the rate of purine production to meet intracellular purine demand.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Purinas/biossíntese , Linhagem Celular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos
17.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526462

RESUMO

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metaloendopeptidases/química , Metaloendopeptidases/genética , Modelos Biológicos , Mutagênese , Agregados Proteicos/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
FEMS Yeast Res ; 18(3)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546391

RESUMO

Tyrosine phosphorylation is a key biochemical signal that controls growth and differentiation in multicellular organisms. Saccharomyces cerevisiae and nearly all other unicellular eukaryotes lack intact phosphotyrosine signaling pathways. However, many of these organisms have primitive phosphotyrosine-binding proteins and tyrosine phosphatases, leading to the assumption that the major barrier for emergence of phosphotyrosine signaling was the negative consequences of promiscuous tyrosine kinase activity. In this work, we reveal that the classic oncogene v-Src, which phosphorylates many dozens of proteins in yeast, is toxic because it disrupts a specific spore wall remodeling pathway. Using genetic selections, we find that expression of a specific cyclic peptide, or overexpression of SMK1, a MAP kinase that controls spore wall assembly, both lead to robust growth despite a continuous high level of phosphotyrosine in the yeast proteome. Thus, minimal genetic manipulations allow yeast to tolerate high levels of phosphotyrosine. These results indicate that the introduction of tyrosine kinases within single-celled organisms may not have been a major obstacle to the evolution of phosphotyrosine signaling.


Assuntos
Genes src , Fosfotirosina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Peptídeos Cíclicos/genética , Fosforilação , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Tirosina/metabolismo
19.
Nat Chem Biol ; 14(2): 135-141, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227471

RESUMO

The development of effective antifungal therapeutics remains a formidable challenge because of the close evolutionary relationship between humans and fungi. Mitochondrial function may present an exploitable vulnerability because of its differential utilization in fungi and its pivotal roles in fungal morphogenesis, virulence, and drug resistance already demonstrated by others. We now report mechanistic characterization of ML316, a thiohydantoin that kills drug-resistant Candida species at nanomolar concentrations through fungal-selective inhibition of the mitochondrial phosphate carrier Mir1. Using genetic, biochemical, and metabolomic approaches, we established ML316 as the first Mir1 inhibitor. Inhibition of Mir1 by ML316 in respiring yeast diminished mitochondrial oxygen consumption, resulting in an unusual metabolic catastrophe marked by citrate accumulation and death. In a mouse model of azole-resistant oropharyngeal candidiasis, ML316 reduced fungal burden and enhanced azole activity. Targeting Mir1 could provide a new, much-needed therapeutic strategy to address the rapidly rising burden of drug-resistant fungal infection.


Assuntos
Candidíase/tratamento farmacológico , Mitocôndrias/metabolismo , Fosfatos/metabolismo , Animais , Antifúngicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Candida/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica , Feminino , Células Hep G2 , Humanos , Imunossupressores , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Consumo de Oxigênio , Tioidantoínas/farmacologia
20.
Proc Natl Acad Sci U S A ; 114(52): E11313-E11322, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229832

RESUMO

Calcineurin is an essential Ca2+-dependent phosphatase. Increased calcineurin activity is associated with α-synuclein (α-syn) toxicity, a protein implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin can be inhibited with Tacrolimus through the recruitment and inhibition of the 12-kDa cis-trans proline isomerase FK506-binding protein (FKBP12). Whether calcineurin/FKBP12 represents a native physiologically relevant assembly that occurs in the absence of pharmacological perturbation has remained elusive. We leveraged α-syn as a model to interrogate whether FKBP12 plays a role in regulating calcineurin activity in the absence of Tacrolimus. We show that FKBP12 profoundly affects the calcineurin-dependent phosphoproteome, promoting the dephosphorylation of a subset of proteins that contributes to α-syn toxicity. Using a rat model of PD, partial elimination of the functional interaction between FKBP12 and calcineurin, with low doses of the Food and Drug Administration (FDA)-approved compound Tacrolimus, blocks calcineurin's activity toward those proteins and protects against the toxic hallmarks of α-syn pathology. Thus, FKBP12 can endogenously regulate calcineurin activity with therapeutic implications for the treatment of PD.


Assuntos
Calcineurina/metabolismo , Doença de Parkinson/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , alfa-Sinucleína/metabolismo , Animais , Calcineurina/genética , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosfoproteínas/genética , Proteoma/genética , Ratos , Ratos Sprague-Dawley , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA