Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Microbiol ; 14: 1225207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156000

RESUMO

Identification of enteric bacteria species by whole genome sequence (WGS) analysis requires a rapid and an easily standardized approach. We leveraged the principles of average nucleotide identity using MUMmer (ANIm) software, which calculates the percent bases aligned between two bacterial genomes and their corresponding ANI values, to set threshold values for determining species consistent with the conventional identification methods of known species. The performance of species identification was evaluated using two datasets: the Reference Genome Dataset v2 (RGDv2), consisting of 43 enteric genome assemblies representing 32 species, and the Test Genome Dataset (TGDv1), comprising 454 genome assemblies which is designed to represent all species needed to query for identification, as well as rare and closely related species. The RGDv2 contains six Campylobacter spp., three Escherichia/Shigella spp., one Grimontia hollisae, six Listeria spp., one Photobacterium damselae, two Salmonella spp., and thirteen Vibrio spp., while the TGDv1 contains 454 enteric bacterial genomes representing 42 different species. The analysis showed that, when a standard minimum of 70% genome bases alignment existed, the ANI threshold values determined for these species were ≥95 for Escherichia/Shigella and Vibrio species, ≥93% for Salmonella species, and ≥92% for Campylobacter and Listeria species. Using these metrics, the RGDv2 accurately classified all validation strains in TGDv1 at the species level, which is consistent with the classification based on previous gold standard methods.

2.
Microorganisms ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004814

RESUMO

Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx2f were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx2f-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx2f-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans.

3.
Microorganisms ; 11(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894219

RESUMO

The sharing of genome sequences in online data repositories allows for large scale analyses of specific genes or gene families. This can result in the detection of novel gene subtypes as well as the development of improved detection methods. Here, we used publicly available WGS data to detect a novel Stx subtype, Stx2n in two clinical E. coli strains isolated in the USA. During this process, additional Stx2 subtypes were detected; six Stx2j, one Stx2m strain, and one Stx2o, were all analyzed for variability from the originally described subtypes. Complete genome sequences were assembled from short- or long-read sequencing and analyzed for serotype, and ST types. The WGS data from Stx2n- and Stx2o-producing STEC strains were further analyzed for virulence genes pro-phage analysis and phage insertion sites. Nucleotide and amino acid maximum parsimony trees showed expected clustering of the previously described subtypes and a clear separation of the novel Stx2n subtype. WGS data were used to design OMNI PCR primers for the detection of all known stx1 (283 bp amplicon), stx2 (400 bp amplicon), intimin encoded by eae (221 bp amplicon), and stx2f (438 bp amplicon) subtypes. These primers were tested in three different laboratories, using standard reference strains. An analysis of the complete genome sequence showed variability in serogroup, virulence genes, and ST type, and Stx2 pro-phages showed variability in size, gene composition, and phage insertion sites. The strains with Stx2j, Stx2m, Stx2n, and Stx2o showed toxicity to Vero cells. Stx2j carrying strain, 2012C-4221, was induced when grown with sub-inhibitory concentrations of ciprofloxacin, and toxicity was detected. Taken together, these data highlight the need to reinforce genomic surveillance to identify the emergence of potential new Stx2 or Stx1 variants. The importance of this surveillance has a paramount impact on public health. Per our description in this study, we suggest that 2017C-4317 be designated as the Stx2n type-strain.

4.
Emerg Infect Dis ; 29(9): 1895-1899, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610207

RESUMO

Genomic characterization of an Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks dates its emergence to late 2015. One clade has notable accessory genomic content and a previously described mutation putatively associated with increased arsenic tolerance. This strain is a reoccurring, emerging, or persistent strain causing illness over an extended period.


Assuntos
Escherichia coli O157 , Escherichia coli O157/genética , Surtos de Doenças , Genômica , Mutação
5.
Foods ; 11(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35804790

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) cause urinary tract and potentially life-threatening invasive infections. Unfortunately, the origins of ExPEC are not always clear. We used genomic data of E. coli isolates from five U.S. government organizations to evaluate potential sources of ExPEC infections. Virulence gene analysis of 38,032 isolates from human, food animal, retail meat, and companion animals classified the subset of 8142 non-diarrheagenic isolates into 40 virulence groups. Groups were identified as low, medium, and high relative risk of containing ExPEC strains, based on the proportion of isolates recovered from humans. Medium and high relative risk groups showed a greater representation of sequence types associated with human disease, including ST-131. Over 90% of food source isolates belonged to low relative risk groups, while >60% of companion animal isolates belonged to medium or high relative risk groups. Additionally, 18 of the 26 most prevalent antimicrobial resistance determinants were more common in high relative risk groups. The associations between antimicrobial resistance and virulence potentially limit treatment options for human ExPEC infections. This study demonstrates the power of large-scale genomics to assess potential sources of ExPEC strains and highlights the importance of a One Health approach to identify and manage these human pathogens.

6.
Microbiol Res ; 262: 127109, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803059

RESUMO

Escherichia albertii is an emerging enteric bacterial pathogen causing watery diarrhea, abdominal distension, vomiting and fever in humans. E. albertii has caused many foodborne outbreaks in Japan and was also reported in other countries worldwide. However, the important animal reservoirs of this pathogen are still largely unknown, impeding us to combat this emerging pathogen. Recently, we reported that wild raccoons (Procyon lotor) and broiler chickens are significant reservoirs of E. albertii in Japan and the U.S., respectively. Here, we performed a longitudinal surveillance to monitor prevalence of E. albertii in wild raccoons in the U.S. and conducted comprehensive comparative analyses of the E. albertii of different origins. A total of 289 fecal swab samples were collected from wild raccoons in Tennessee and Kentucky in the U.S. (2018-2020). Approximately 26% (74/289) of the raccoons examined were PCR-positive for E. albertii and eventually 22 E. albertii isolates were obtained. PFGE analysis showed the U.S. raccoon E. albertii were phylogenetically distant even though the corresponding raccoons were captured from a small area. Unlike the high prevalence of multidrug resistance (83%) observed in previous chicken E. albertii survey, antibiotic resistance was rarely observed in all the U.S. raccoon and 22 Japan raccoon strains with only one Japan strain displaying multidrug resistance (2%). Whole genome sequencing of 54 diverse E. albertii strains and subsequent comparative genomics analysis revealed unique clusters that displayed close evolutionary relationships and similar virulence gene profiles among the strains of different origins in terms of geographical locations (e.g., U.S. and Japan) and hosts (raccoon, chicken, swine, and human). Challenge experiment demonstrated raccoon E. albertii strains could successfully colonize in the chicken intestine at 3 and 8 days postinfection. A pilot environmental survey further showed all the four tested water samples from Tennessee river were E. albertii-positive; two different E. albertii strains, isolated from a single water sample, showed close relationships to those of human origin. Together, the findings from this study provide new insights into the ecology, evolution, and pathobiology of E. albertii, and underscore the need to control the emerging E. albertii in a complex ecosystem using One Health approach.


Assuntos
Ecossistema , Guaxinins , Animais , Galinhas , Escherichia , Humanos , Suínos , Estados Unidos/epidemiologia , Água
7.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259246

RESUMO

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Assuntos
Doenças Transmitidas por Alimentos , Animais , Surtos de Doenças/prevenção & controle , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Genômica , Estados Unidos , Sequenciamento Completo do Genoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-32175286

RESUMO

In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx2a, stx1a and stx2a, or stx2a and stx2c. All of the strains elaborated 105-106 cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx2a+stx2c+ isolates were 90-100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx2a+ isolate was avirulent. Both an stx2a and a recA deletion mutant of one of the stx2a+stx2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx1a+stx2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Animais , Chlorocebus aethiops , Escherichia coli O157/genética , Fezes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga II/genética , Células Vero , Virulência
9.
Artigo em Inglês | MEDLINE | ID: mdl-30834391

RESUMO

Escherichia albertii is an emerging pathogen that is closely related to Escherichia coli and can carry some of the same virulence genes as E. coli. Here, we report the release of Illumina-corrected PacBio sequences for eight E. albertii genomes. Two of these strains carry Shiga toxin 2f.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30745393

RESUMO

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30393782

RESUMO

We report here Illumina-corrected PacBio whole-genome sequences of an Escherichia coli serotype O157:H7 strain (2017C-4109), an E. coli serotype O[undetermined]:H2 strain (2017C-4173W12), and a Salmonella enterica subsp. enterica serovar Enteritidis strain (2017K-0021), all of which carried the mcr-1 resistance gene on an IncI2 or IncX4 plasmid. We also determined that pMCR-1-CTSe is identical to a previously published plasmid, pMCR-1-CT.

12.
J Food Prot ; 81(8): 1275-1282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985068

RESUMO

The U.S. Food and Drug Administration Escherichia coli Identification (FDA-ECID) microarray provides rapid molecular characterization of E. coli. The effectiveness of the FDA-ECID for characterizing Shiga toxin-producing E. coli (STEC) was evaluated by three federal laboratories and one reference laboratory with a panel of 54 reference E. coli strains from the External Quality Assurance program. Strains were tested by FDA-ECID for molecular serotyping (O and H antigens), Shiga toxin subtyping, and the presence of the ehxA and eae genes for enterohemolysin and intimin, respectively. The FDA-ECID O typing was 96% reproducible among the four laboratories and 94% accurate compared with the reference External Quality Assurance data. Discrepancies were due to the absence of O41 target loci on the array and to two pairs of O types with identical target sequences. H typing was 96% reproducible and 100% accurate, with discrepancies due to two strains from one laboratory that were identified as mixed by FDA-ECID. Shiga toxin (Stx) type 1 subtyping was 100% reproducible and accurate, and Stx2 subtyping was 100% reproducible but only 64% accurate. FDA-ECID identified most Stx2 subtypes but had difficulty distinguishing among stx2a, stx2c, and stx2d genes because of close similarities of these sequences. FDA-ECID was 100% effective for detecting ehxA and eae and accurately subtyped the eae alleles. This interlaboratory study revealed that FDA-ECID for STEC characterization was highly reproducible for molecular serotyping, stx and eae subtyping, and ehxA detection. However, the array was less useful for distinguishing among the highly homologous O antigen genes and the stx2a, stx2c, and stx2d subtypes.


Assuntos
Proteínas de Escherichia coli , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica , Virulência/genética , Proteínas de Escherichia coli/genética , Humanos , Sorotipagem , Toxina Shiga , Toxina Shiga I , Escherichia coli Shiga Toxigênica/isolamento & purificação , Estados Unidos , United States Food and Drug Administration
13.
Genome Announc ; 6(19)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748405

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an enteric foodborne pathogen that can cause mild to severe illness. Here, we report the availability of high-quality whole-genome sequences for 77 STEC strains generated using the PacBio sequencing platform.

14.
Genome Announc ; 6(15)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650580

RESUMO

Shigella spp. are enteric pathogens that cause shigellosis. We report here the high-quality whole-genome sequences of 59 historical Shigella strains that represent the four species and a variety of serotypes.

15.
PLoS One ; 13(3): e0193435, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513730

RESUMO

While antimicrobial resistance in Salmonella enterica is mainly attributed to large plasmids, small plasmids may also harbor antimicrobial resistance genes. Previously, three major groups of ColE1-like plasmids conferring kanamycin-resistance (KanR) in various S. enterica serotypes from diagnostic samples of human or animals were reported. In this study, over 200 KanR S. enterica isolates from slaughter samples, collected in 2010 and 2011 as a part of the animal arm of the National Antimicrobial Resistance Monitoring System, were screened for the presence of ColE1-like plasmids. Twenty-three KanR ColE1-like plasmids were successfully isolated. Restriction fragment mapping revealed five major plasmid groups with subgroups, including two new groups, X (n = 3) and Y/Y2/Y3 (n = 4), in addition to the previously identified groups A (n = 7), B (n = 6), and C/C3 (n = 3). Nearly 75% of the plasmid-carrying isolates were from turkey and included all the isolates carrying X and Y plasmids. All group X plasmids were from serotype Hadar. Serotype Senftenberg carried all the group Y plasmids and one group B plasmid. All Typhimurium isolates (n = 4) carried group A plasmids, while Newport isolates (n = 3) each carried a different plasmid group (A, B, or C). The presence of the selection bias in the NARMS strain collection prevents interpretation of findings at the population level. However, this study demonstrated that KanR ColE1-like plasmids are widely distributed among different S. enterica serotypes in the NARMS isolates and may play a role in dissemination of antimicrobial resistance genes.


Assuntos
Resistência a Canamicina , Carne/microbiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bovinos/microbiologia , Galinhas/microbiologia , Monitoramento Epidemiológico , Escherichia coli , Canamicina/farmacologia , Resistência a Canamicina/genética , Plasmídeos , RNA Bacteriano/metabolismo , Salmonella enterica/genética , Alinhamento de Sequência , Sus scrofa/microbiologia , Perus/microbiologia
16.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326203

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important diarrheagenic pathogen. We report here the high-quality whole-genome sequences of 21 ETEC strains isolated from patients in the United States, international diarrheal surveillance studies, and cruise ship outbreaks.

17.
Genome Announc ; 6(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301876

RESUMO

Escherichia spp., including E. albertii and E. coli, Shigella dysenteriae, and S. flexneri are causative agents of foodborne disease. We report here reference-level whole-genome sequences of E. albertii (2014C-4356), E. coli (2011C-4315 and 2012C-4431), S. dysenteriae (BU53M1), and S. flexneri (94-3007 and 71-2783).

18.
Genome Announc ; 5(35)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860257

RESUMO

Drug-resistant Shigella sonnei poses a clinical and public health challenge. We report here the high-quality draft whole-genome sequences of four outbreak-associated S. sonnei isolates; three were resistant to two or more antibiotics, and one was resistant to streptomycin only.

19.
J Microbiol Methods ; 140: 1-4, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599915

RESUMO

Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies.


Assuntos
DNA Bacteriano/genética , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Escherichia/classificação , Escherichia/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Infecção Hospitalar , Primers do DNA/genética , Enterobacteriaceae/genética , Escherichia/genética , Escherichia coli/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Sensibilidade e Especificidade
20.
Genome Announc ; 5(11)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302788

RESUMO

Enterobacteriaceae carrying plasmid-mediated colistin resistance have been found around the world. We report here the high-quality whole-genome sequence of an Escherichia coli O157:H48 isolate (2016C-3936C1) from Connecticut that carried the mcr-1 resistance gene on an IncX4-type plasmid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA