Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 15(11): 28154-65, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561815

RESUMO

In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

2.
Opt Express ; 23(16): 21375-83, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367985

RESUMO

In this paper, we propose a novel flexible metamaterial (MM) absorber. The conductive pattern consists of liquid metal eutectic gallium indium alloy (EGaIn) enclosed in elastomeric microfluidic channels. Polydimethylsiloxane (PDMS) material is used as a supporting substrate. The proposed MM absorber is flexible because of its liquid metal and PDMS substrate. Numerical simulations and experimental results are presented when the microfluidic channels are filled with liquid metal. In order to evaluate the proposed MM absorber's performance, the fabricated absorber prototype is tested with rectangular waveguides. Almost perfect absorptivity is achieved at a resonant frequency of 8.22 GHz.

3.
Opt Express ; 23(1): 110-20, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25835658

RESUMO

In this paper, we propose a novel microfluidic tunable metamaterial (MM) absorber printed on a paper substrate in silver nanoparticle ink. The metamaterial is designed using a periodic array consisting of square patches. The conductive patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polymethyl methacrylate (PMMA). The conductive patterns on paper and the microfluidic channels on PMMA are bonded by an SU-8 layer that is also inkjet-printed on the conductive patterns. The proposed MM absorber provides frequency-tuning capability for different fluids in the microfluidic channels. We performed full-wave simulations and measurements that confirmed that the resonant frequency decreased from 4.42 GHz to 3.97 GHz after the injection of distilled water into the microfluidic channels. For both empty and water-filled channels, the absorptivity is higher than 90% at horizontal and vertical polarizations.

4.
Opt Express ; 23(5): 5898-906, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836816

RESUMO

In this paper, a novel flexible inkjet-printed metamaterial absorber is proposed. The unit cell of the metamaterial is designed with a modified Jerusalem-cross ring resonator and is inkjet printed with silver nanoparticle ink on a flexible polymer film. All fabrication processes are performed using a commercial printer (EPSON WF-7011). The absorber's flexibility and absorption performance are demonstrated by measuring the absorption ratio after coating the proposed absorber on a cylindrical object with a radius of 4.56 cm. An absorption rate exceeding 99% is achieved at 9.21 GHz for both flat and cylindrical surfaces. In addition, the cylindrical model attains an absorption rate higher than 96% for all polarization angles, and a high absorption rate of 95% is preserved until the incident angle is less than 30þ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA