RESUMO
BACKGROUND: Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers. METHODS: ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation. RESULTS: WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS. CONCLUSIONS: ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.
Assuntos
Neoplasias Ovarianas , Telômero , Humanos , Feminino , Telômero/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Algoritmos , Axitinibe , Biomarcadores , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Ovarian cancer stem cells (OCSCs) are the main cause of relapse and drug resistance in patients with ovarian cancer. Anisomycin has been shown to be an effective antitumor agent, but its mechanism of action in ovarian cancer remains elusive. METHODS: CD44+/CD133+ human OCSCs were isolated from human ovarian cancer tissues. OCSCs were interfered with using anisomycin and specific small-interfering RNA (siRNA). Microarray assay, MTT, in vivo tumorigenic experiments, transwell assay, cell cycle assay, colony formation assay, angiogenesis assay, and hematoxylin and eosin staining were used to detect the mechanism of anisomycin with respect to inhibiting the activity of OCSCs. Expression of the NCBP2-AS2/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) pathway was examined using western blotting, a quantitative real-time PCR (RT-qPCR) and immunofluorescence staining. Bioinformatics analysis was used for predictive analysis of NCBP2-AS2 expression in urogenital tumors. RESULTS: Microarray analysis showed that treatment with anisomycin significantly decreased the expression of antisense RNA NCBP2-AS2 in OCSCs. In vitro cellular experiments showed that interfering with endogenous antisense RNA NCBP2-AS2 using siRNA distinctly inhibited the proliferation, migration and angiogenesis of OCSCs, whereas in vivo animal experiments revealed decreased tumorigenesis in nude mice. Moreover, the results of RT-qPCR and western blotting demonstrated that both anisomycin treatment and NCBP2-AS2 silencing led to significant reductions in the mRNA and protein expression levels of NCBP2-AS2, MEK, ERK and STAT3. From a bioinformatic point of view, antisense RNA NCBP2-AS2 exhibited significantly differential expression between urogenital tumors and normal controls, and a similar expression pattern was found in the genes NCBP2, RPL35A, DNAJC19 and ECE2, which have similarity to NCBP2-AS2. CONCLUSIONS: Anisomycin suppresses the in vivo and in vitro activity of human OCSCs by downregulating the antisense RNA NCBP2-AS2/MEK/ERK/STAT3 signaling pathway, whereas the antisense RNA NCBP2-AS2 and genes with similarity have the potential to serve as markers for clinical diagnosis and prognosis of urogenital tumors.
Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Anisomicina/metabolismo , Anisomicina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fator de Transcrição STAT3/genética , Camundongos Nus , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Transdução de Sinais , RNA Interferente Pequeno/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células/genéticaRESUMO
Background: Ovarian cancer recurrence and metastasis are predominantly attributed to ovarian cancer stem cells; however, the mechanism by which anisomycin regulates human ovarian cancer stem cells (HuOCSCs) remains unclear. Methods: cDNA microArray was used to screen microRNAs (miRNAs) targeted by anisomycin, and RT-qPCR validated the miRNA targets. TargetScan database, GO enrichment analysis, and RT-qPCR, accompanied by a fluorescent reporter system, were employed to verify the miRNA target genes. In vitro experimental cell proliferation inhibition assay, flow cytometry, Transwell, angiogenesis assay, and in vivo transplantation tumor assay were implemented to assess the ability of the overexpressed miRNAs to hinder HuOCSC activity. Western blot, RT-qPCR, and immunofluorescence were applied to measure the transcriptional and protein-level expression of the miRNA target genes and their related genes. Bioinformatic analysis predicted and deciphered the role of the miRNA target genes and related genes in the development and prognosis of ovarian cancer. Results: The expression levels of multiple DLK1-DIO3 imprinted microRNA cluster members were altered by anisomycin, among which miR-134-3p expression was most significantly elevated. miR-134-3p overexpression significantly suppressed HuOCSC activity. The screening and validation of target genes uncovered that miR-134-3p was able to markedly suppress GPR137 expression. Additionally, miR-134-3p regulated the cytoskeleton, migration-related protein in the NDEL1/DYNEIN/TUBA1A axis through targeting GPR137. Bioinformatics prediction unveiled a close association of GPR137, NDEL1, DYNC1H1, and TUBA1A with ovarian cancer development and prognosis. Conclusions: The activity of HuOCSCs may be compromised by anisomycin through the regulation of miR-134-3p, which inhibits the GPR137/NDEL1/DYNEIN/TUBA1A axis.
RESUMO
Premature ovarian failure (POF) is the leading cause of female infertility, and there is no optimal treatment or medication available currently. For POF, electroacupuncture (EA) has been considered a promising therapeutic approach, but the mechanism for this is not clear. In this study, we explored the effects of EA (CV4, ST36, and SP6) on oxidative stress and intestinal microbiota of high-fat and high-sugar- (HFHS-) induced POF mice. The development of mice follicles was observed by hematoxylin and eosin (HE) staining. The serum levels of estrone (E1), estrogen (E2), estriol (E3), and 21-deoxycortisol (21D) were measured by the HPLC-MS/MS method. The concentrations of Fe2+, superoxide dismutase (SOD), hydroxyl radical (·OH), glutathione (GSH), superoxide anion, and malondialdehyde (MDA) were measured by spectrophotometry. The 16S-rDNA sequencing was used to measure many parameters related to the host gut bacteriome and mycobiome composition, relative abundance, and diversity. mRNA expression levels of ferroptosis-related genes were determined by RT-qPCR. After 4 weeks of EA intervention in POF mice, mature follicles were increased and the levels of the sex hormone were improved. SOD activities, antisuperoxide activities, and GSH increased while MDA, ·OH, and Fe2+ decreased. In addition, EA also altered the intestinal microbiota. These results reveal that EA can effectively inhibit ovarian oxidative stress and the accumulation of Fe2+ in POF mice. It may be that the alteration in the intestinal microbiota is one of the potential mechanisms of EA treatment. These findings suggest that EA has clinical potential as a safe treatment for POF.