Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
JOR Spine ; 7(4): e70006, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39391171

RESUMO

Background: Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods: To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and µCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results: At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion: The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.

2.
Stem Cell Res Ther ; 15(1): 349, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380096

RESUMO

BACKGROUND: The inflammatory microenvironment plays an essential role in bone healing after fracture. The signaling lymphocytic activation molecule family (SLAMF) members deeply participate in inflammatory response and make a vast difference. METHODS: We identified SLAMF8 in GEO datasets (GSE129165 and GSE176086) and co-expression analyses were performed to define the relationships between SLAMF8 and osteogenesis relative genes (RUNX2 and COL1A1). In vitro, we established SLAMF8 knockdown and overexpression mouse bone marrow mesenchymal stem cells (mBMSCs) lines. qPCR, Western blot, ALP staining, ARS staining, Oil Red O staining and Immunofluorescence analyses were performed to investigate the effect of SLAMF8 in mBMSCs osteogenesis and adipogenesis. In vivo, mice femoral fracture model was performed to explore the function of SLAMF8. RESULTS: SLAMF8 knockdown significantly suppressed the expression of osteogenesis relative genes (RUNX2, SP7 and COL1A1), ALP activity and mineral deposition, but increased the expression of adipogenesis relative genes (PPARγ and C/EBPα). Additionally, SLAMF8 overexpression had the opposite effects. The role SLAMF8 played in mBMSCs osteogenic and adipogenic differentiation were through S100A6 and Wnt/ß-Catenin signaling pathway. Moreover, SLAMF8 overexpression mBMSCs promoted the healing of femoral fracture. CONCLUSIONS: SLAMF8 promotes osteogenesis and inhibits adipogenesis of mBMSCs via S100A6 and Wnt/ß-Catenin signaling pathway. SLAMF8 overexpression mBMSCs effectively accelerate the healing of femoral fracture in mice.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Osteogênese , Família de Moléculas de Sinalização da Ativação Linfocitária , Via de Sinalização Wnt , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Diferenciação Celular , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Fraturas do Fêmur/genética , Fraturas do Fêmur/terapia
3.
JCI Insight ; 9(21)2024 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-39316443

RESUMO

As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.


Assuntos
Envelhecimento , Cálcio , Retículo Endoplasmático , Homeostase , Degeneração do Disco Intervertebral , Mitocôndrias , Animais , Retículo Endoplasmático/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Camundongos , Mitocôndrias/metabolismo , Cálcio/metabolismo , Humanos , Envelhecimento/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Camundongos Knockout , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Masculino , Feminino , Quercetina/farmacologia , Metilação de DNA , Serina Endopeptidases , Pró-Proteína Convertases
4.
J Magn Reson Imaging ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010746

RESUMO

BACKGROUND: According to the T1ρ value of nucleus pulposus, our previous study has found that intervertebral disc degeneration (IDD) can be divided into three phases based on T1ρ-MR, which is helpful for the selection of biomaterial treatment timing. However, the routine MR sequences for patients with IDD are T1- and T2-MR, T1ρ-MR is not commonly used due to long scanning time and extra expenses, which limits the application of T1ρ-MR based IDD phases. PURPOSE: To build a deep learning model to achieve the classification of T1ρ-MR based IDD phases from routine T1-MR images. STUDY TYPE: Retrospective. POPULATION: Sixty (M/F: 35/25) patients with low back pain or lower limb radiculopathy are randomly divided into training (N = 50) and test (N = 10) sets. FIELD STRENGTH/SEQUENCES: 1.5 T MR scanner; T1-, T2-, and T1ρ-MR sequence (spin echo). ASSESSMENT: The T1ρ values of the nucleus pulposus in intervertebral discs (IVDs) were measured. IVDs were divided into three phases based on the mean T1ρ value: pre-degeneration phase (mean T1ρ value >110 msec), rapid degeneration phase (mean T1ρ value: 80-110 msec), and late degeneration phase (mean T1ρ value <80 msec). After measurement, the T1ρ values, phases, and levels of IVDs were input into the model as labels. STATISTICAL TESTS: Intraclass correlation coefficient, area under the receiver operating characteristic curve (AUC), F1-score, accuracy, precision, and recall (P < 0.05 was considered significant). RESULTS: In the test dataset, the model achieved a mean average precision of 0.996 for detecting IVD levels. The diagnostic accuracy of the T1ρ-MR based IDD phases was 0.840 and the AUC was 0.871, the average AUC of 5-folds cross validation was 0.843. DATA CONCLUSION: The proposed deep learning model achieved the classification of T1ρ-MR based IDD phases from routine T1-MR images, which may provide a method to facilitate the application of T1ρ-MR in IDD. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

5.
J Formos Med Assoc ; 123(11): 1154-1160, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38944614

RESUMO

BACKGROUND AND AIMS: Risk stratification for patients with a higher risk of hepatocellular carcinoma (HCC) is crucial. We aimed to investigate the role of the Fibrosis-4 (FIB-4) index in predicting chronic hepatitis C (CHC)-related HCC. METHODS: A retrospective cohort study consecutively included treatment-naive CHC patients receiving longitudinal follow-up at the National Taiwan University Hospital from 1986 to 2014. The clinical data were collected and traced for HCC development. Multivariable Cox proportional hazard regression analysis was used to investigate the predictors for HCC. RESULTS: A total of 1285 patients in the ERADICATE-C cohort were included. The median age was 54, 56% were females, and 933 had HCV viremia. There were 33%, 38%, and 29% of patients having FIB-4 index <1.45, 1.45-3.25, and ≥3.25, respectively. After a median of 9-year follow-up, 186 patients developed HCC. Multivariable analysis revealed that older age, AFP≥20 ng/mL, cirrhosis, and a higher FIB-4 index were independent predictors for HCC. Compared with patients with FIB-4 index <1.45, those with FIB-4 1.45-3.25 had a 5.51-fold risk (95% confidence interval [CI]: 2.65-11.46), and those with FIB-4 ≥ 3.25 had 7.45-fold risk (95% CI: 3.46-16.05) of HCC. In CHC patients without viremia, FIB-4 index 1.45-3.25 and FIB-4 ≥ 3.25 increased 6.78-fold and 16.77-fold risk of HCC, respectively, compared with those with FIB-4 < 1.45. CONCLUSION: The baseline FIB-4 index can stratify the risks of HCC in untreated CHC patients, even those without viremia. The FIB-4 index should thus be included in the management of CHC.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Cirrose Hepática , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/etiologia , Feminino , Masculino , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/epidemiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Hepatite C Crônica/complicações , Taiwan/epidemiologia , Cirrose Hepática/complicações , Adulto , Fatores de Risco , Idoso , Modelos de Riscos Proporcionais , Medição de Risco , Análise Multivariada , alfa-Fetoproteínas/análise
7.
Sci Transl Med ; 15(722): eadg8982, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967203

RESUMO

Low back pain (LBP) is one of the most prevalent diseases affecting quality of life, with no disease-modifying therapy. During aging and spinal degeneration, the balance between the normal endplate (EP) bilayers of cartilage and bone shifts to more bone. The aged/degenerated bony EP has increased porosity because of osteoclastic remodeling activity and may be a source of LBP due to aberrant sensory innervation within the pores. We used two mouse models of spinal degeneration to show that parathyroid hormone (PTH) treatment induced osteogenesis and angiogenesis and reduced the porosity of bony EPs. PTH increased the cartilaginous volume and improved the mechanical properties of EPs, which was accompanied by a reduction of the inflammatory factors cyclooxygenase-2 and prostaglandin E2. PTH treatment furthermore partially reversed the innervation of porous EPs and reversed LBP-related behaviors. Conditional knockout of PTH 1 receptors in the nucleus pulposus (NP) did not abolish the treatment effects of PTH, suggesting that the NP is not the primary source of LBP in our mouse models. Last, we showed that aged rhesus macaques with spontaneous spinal degeneration also had decreased EP porosity and sensory innervation when treated with PTH, demonstrating a similar mechanism of PTH action on EP sclerosis between mice and macaques. In summary, our results suggest that PTH treatment could partially reverse EP restructuring during spinal regeneration and support further investigation into this potentially disease-modifying treatment strategy for LBP.


Assuntos
Dor Lombar , Hormônio Paratireóideo , Camundongos , Animais , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Macaca mulatta , Qualidade de Vida , Modelos Animais de Doenças
8.
Biomater Sci ; 11(10): 3629-3644, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37010367

RESUMO

Overactive inflammatory cascade accompanied by oxidative stress in the nucleus pulposus exacerbates intervertebral disc degeneration (IVDD). Hydrogels have been demonstrated to be promising in treating IVDD, yet they remain less efficacious in the case of anti-inflammation associated with antioxidation. In this study, we designed an injectable self-antioxidant hydrogel (HA/CS) with enhanced inflammation inhibitory performance for delivering chondroitin sulfate (CS) with well-documented anti-inflammatory property to treat IVDD. The hydrogel was rapidly formed via dynamic boronate ester bonding between furan/phenylboronic acid and furan/dopamine-modified hyaluronic acid (HA), and mechanically enhanced by Diels-Alder reaction-induced secondary crosslinking, partial dopamine groups of which contribute to grafting phenylboronic acid-modified CS (CS-PBA). This hydrogel exhibits favorable injectability, mechanical property, and pH-responsive delivery behavior. The dopamine moiety endows the hydrogel with efficient antioxidative property. By sustained delivery of CS, the HA/CS hydrogel is well competent to inhibit inflammatory cytokine expression and maintain anabolic/catabolic balance in an inflammation-simulated environment. Most importantly, the HA/CS hydrogel significantly ameliorates degeneration in a puncture-induced IVDD rat model. The self-antioxidant HA/CS hydrogel designed in this work may serve as a novel and promising therapeutic platform for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sulfatos de Condroitina , Dopamina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Hialurônico/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Furanos/metabolismo
9.
J Orthop Translat ; 37: 152-162, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36380884

RESUMO

Background: /Objective: Tissue engineering involves scaffolds, cells and growth factors, among which growth factors have limited applications due to potential safety risks and high costs. Therefore, an alternative approach to exogenously induce osteogenesis is desirable. Considering that osteogenesis and angiogenesis are coupled, a system of human umbilical vein endothelial cells (HUVECs) and human bone mesenchymal stem cells (hBMSCs) coculture is more biologically adapted to the microenvironment in vivo and can mediate osteogenesis and angiogenesis via paracrine signalling. Hence, in this study, a HUVECs/hBMSCs coculture system with appropriate cell and medium proportions was established. The substrate for the coculture system was a 3D-printed composite bioceramic scaffold (ß-TCP/CaSiO3) based on a previous study. The aim of this study was to explore the potential of this system for bone tissue engineering. Methods: Bioactive ceramic scaffolds for tissue engineering were fabricated via a 3D Bioplotter™ system. The coculture system for in vitro and in vivo studies consisted of direct contact between HUVECs and hBMSCs cultured on the 3D-printed scaffolds. Results: The proportions of HUVECs/hBMSCs and medium components were determined by cell viability, and the coculture system showed negligible cytotoxicity. CD31 secreted by HUVECs formed strings, and cells tended to aggregate in island chain-like arrays. Real-time cell tracking showed that HUVECs were recruited by hBMSCs, and the integrin expression by HUVECs was upregulated. Ultimately, osteogenic and angiogenic marker gene expression and protein secretion were upregulated. Moreover, the obtained bone tissue engineering scaffolds could induce early osteogenic protein secretion and capillary tube formation in nude rats. Conclusion: These bone tissue engineering scaffolds without exogenous growth factors exhibited the ability to promote osteogenesis/angiogenesis. Translational potential of this article: The fabricated 3D-printed bioactive ceramic scaffolds could provide mechanical, biodegradable and bioadaptive support for personalized bone regeneration. In addition, the bone tissue engineering scaffolds exhibited the ability to promote osteogenesis/angiogenesis without the addition of exogenous growth factors, thus mitigating safety risks. Although application of the HUVECs/hBMSCs coculture system might be a time-consuming process, further development of cord blood storage could be beneficial for multicell coculture.

10.
Front Microbiol ; 13: 958132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212814

RESUMO

Orthopedic device-related infection (ODRI) caused by Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) biofilm may lead to persist infection and severe inflammatory osteolysis. Previous studies have demonstrated that both isobavachalcone and curcumin possess antimicrobial activity, recent studies also reveal their antiosteoporosis, anti-inflammation, and immunoregulatory effect. Thus, this study aims to investigate whether the combination of isobavachalcone and curcumin can enhance the anti-S. aureus biofilm activity of gentamicin and alleviate inflammatory osteolysis in vivo. EUCAST and a standardized MBEC assay were used to verify the synergy between isobavachalcone and curcumin with gentamicin against planktonic S. aureus and its biofilm in vitro, then the antimicrobial and immunoregulatory effect of cocktail therapy was demonstrated in a femoral ODRI mouse model in vivo by µCT analysis, histopathology, quantification of bacteria in bone and myeloid-derived suppressor cell (MDSC) in bone marrow. We tested on standard MSSA ATCC25923 and MRSA USA300, 5 clinical isolated MSSA, and 2 clinical isolated MRSA strains and found that gentamicin with curcumin (62.5-250 µg/ml) and gentamicin with isobavachalcone (1.56 µg/ml) are synergistic against planktonic MSSA, while gentamicin (128 µg/ml) with curcumin (31.25-62.5, 250-500 µg/ml) and gentamicin (64-128 µg/ml) with isobavachalcone (1.56-12.5 µg/ml) exhibit synergistic effect against MSSA biofilm. Results of further study revealed that cocktail of 128 µg/ml gentamicin together with 125 µg/ml curcumin +6.25 µg/ml isobavachalcone showed promising biofilm eradication effect with synergy against USA300 biofilm in vitro. Daily intraperitoneal administration of 20 mg/kg/day isobavachalcone, 20 mg/kg/day curcumin, and 20 mg/kg/day gentamicin, can reduce inflammatory osteolysis and maintain microarchitecture of trabecular bone during orthopedic device-related MRSA infection in mice. Cocktail therapy also enhanced reduction of MDSC M1 polarization in peri-implant tissue, suppression of MDSC amplification in bone marrow, and Eradication of USA300 biofilm in vivo. Together, these results suggest that the combination of isobavachalcone and curcumin as adjuvants administrated together with gentamicin significantly enhances its antimicrobial effect against S. aureus biofilm, and can also modify topical inflammation in ODRI and protect bone microstructure in vivo, which may serve as a potential treatment strategy, especially for S. aureus induced ODRI.

11.
Front Cell Dev Biol ; 10: 834668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016659

RESUMO

Degenerative cervical myelopathy (DCM) is one of the leading causes of progressive spinal cord dysfunction in the elderly. Early diagnosis and treatment of DCM are essential to avoid permanent disability. The pathophysiology of DCM includes chronic ischemia, destruction of the blood-spinal cord barrier, demyelination, and neuronal apoptosis. Electrophysiological studies including electromyography (EMG), nerve conduction study (NCS), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) are useful in detecting the presymptomatic pathological changes of the spinal cord, and thus supplementing the early clinical and radiographic examinations in the management of DCM. Preoperatively, they are helpful in detecting DCM and ruling out other diseases, assessing the spinal cord compression level and severity, predicting short- and long-term prognosis, and thus deciding the treatment methods. Intra- and postoperatively, they are also useful in monitoring neurological function change during surgeries and disease progression during follow-up rehabilitation. Here, we reviewed articles from 1979 to 2021, and tried to provide a comprehensive, evidence-based review of electrophysiological examinations in DCM. With this review, we aim to equip spinal surgeons with the basic knowledge to diagnosis and treat DCM using ancillary electrophysiological tests.

12.
Front Cell Dev Biol ; 10: 853688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874831

RESUMO

Senolytics are a class of drugs that selectively eliminate senescent cells and ameliorate senescence-associated disease. Studies have demonstrated the accumulation of senescent disc cells and the production of senescence-associated secretory phenotype decrease the number of functional cells in degenerative tissue. It has been determined that clearance of senescent cell by senolytics rejuvenates various cell types in several human organs, including the largest avascular structure, intervertebral disc (IVD). The microvasculature in the marrow space of bony endplate (BEP) are the structural foundation of nutrient exchange in the IVD, but to date, the anti-senescence effects of senolytics on senescent vascular endothelial cells in the endplate subchondral vasculature remains unclear. In this study, the relationships between endothelial cellular senescence in the marrow space of the BEP and IVD degeneration were investigated using the aged mice model. Immunofluorescence staining was used to evaluate the protein expression of P16, P21, and EMCN in vascular endothelial cells. Senescence-associated ß-galactosidase staining was used to investigate the senescence of vascular endothelial cells. Meanwhile, the effects of senolytics on cellular senescence of human umbilical vein endothelial cells were investigated using a cell culture model. Preliminary results showed that senolytics alleviate endothelial cellular senescence in the marrow space of BEP as evidenced by reduced senescence-associated secretory phenotype. In the aged mice model, we found decreased height of IVD accompanied by vertebral bone mass loss and obvious changes to the endplate subchondral vasculature, which may lead to the decrease in nutrition transport into IVD. These findings may provide evidence that senolytics can eliminate the senescent cells and facilitate microvascular formation in the marrow space of the BEP. Targeting senescent cellular clearance mechanism to increase nutrient supply to the avascular disc suggests a potential treatment value of senolytics for IVD degenerative diseases.

13.
Spine (Phila Pa 1976) ; 47(5): E203-E213, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431832

RESUMO

STUDY DESIGN: In vitro experimental study. OBJECTIVE: To establish an axial impact injury model of intervertebral disc (IVD) and to investigate if a single impact injury without endplate structural disruption could initiate intervertebral disc degeneration (IDD), and what is the roles of Piezo1 in this process. SUMMARY OF BACKGROUND DATA: Although IDD process has been confirmed to be associated with structural failures such as endplate fractures, whether a single impact injury of the endplates without structural disruption could initiate IDD remains controversial. Previous studies reported that Piezo1 mediated inflammation participated in the progression of IDD induced by mechanical stretch; however, the roles of Piezo1 in IVD impact injury remain unknown. METHODS: Rats spinal segments were randomly assigned into Control, Low, and High Impact groups, which were subjected to pure axial impact loading using a custom-made apparatus, and cultured for 14 days. The degenerative process was investigated by using histomorphology, real-time Polymerase Chain Reaction(PCR), western-blot, immunofluorescence, and energy metabolism of IVD cell. The effects of Piezo1 were investigated by using siRNA transfection, real-time PCR, western-blot, and immunofluorescence. RESULTS: The discs in both of the impact groups presented degenerative changes after 14 days, which showed significant up-regulation of Piezo1, NLRP3 inflammasome, the catabolic (MMP-9, MMP-13), and pro-inflammatory gene (IL-1ß) expression than that of the control group (P < 0.05), accompanied by significantly increased release of ATP, lactate, nitric oxide (NO), and glucose consumption of IVD cells at first 7 days. Silencing Piezo1 reduced the activation of NLRP3 inflammasome and IL-1ß expression in the nucleus pulposus induced by impact injury. CONCLUSION: It demonstrated that not only fracture of the endplate but also a single impact injury without structural impairment could also initiate IDD, which might be mediated by activation of Piezo1 induced inflammation and abnormal energy metabolism of IVD cells.Level of Evidence: N/A.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Traumatismos da Coluna Vertebral , Animais , Inflamação/genética , Degeneração do Disco Intervertebral/genética , Ratos
14.
J Biomed Nanotechnol ; 17(5): 873-888, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082873

RESUMO

Tissue engineering is a promising approach for the treatment of chronic lower back pain (LBP) caused by intervertebral disc degeneration (IDD) resulting from degeneration and inflammation of annulus fibrosus (AF) tissue. However, scaffold with an anti-inflammatory effect on AF cells has not been reported. In this study, we fabricated a polylactide-glycolide (PLGA)/poly-ε-caprolactone (PCL)Zdextran (DEX) composite membrane loaded with plastrum testudinis extract (PTE), a Traditional Chinese Medicine herbal extract, via electrospinning. The membranes were characterized by mechanical measurements and scanning electron microscopy (SEM). Using an in vitro inflammation model induced by interleukin (IL)-1ß, the cytocompatibility and anti-inflammatory effects of the composites were investigated by CCK-8 assay and flow cytometry. Potential regulatory mechanisms were examined by RT-qPCR and Western blotting. The results showed that the P10P8D2 (PLGA 10 g, PCL 8 g, DEX 2 g) composite nanofiber membrane exhibited the most uniform diameter distribution, best mechanical properties, a moderate degradation rate, and the best cytocompatibility characteristics. The optimal concentration of PTE was 120 µg/mL. Importantly, P10P8D2 combined with PTE exhibited anti-inflammatory and cell proliferation promotion effects. Moreover, the NF-κBB/NLRP3/IL-ß signaling pathway was inactivated. Our findings suggested that the nanofiber membrane composed of P10P8D2 and PTE has anti-inflammatory and pro-proliferation effects on AF cells. It may provide an effective strategy for AF tissue regeneration.


Assuntos
Anel Fibroso , Nanofibras , Anti-Inflamatórios/farmacologia , Caproatos , Dextranos , Lactonas , Extratos Vegetais , Poliésteres , Engenharia Tecidual , Extratos de Tecidos , Alicerces Teciduais
15.
Bioact Mater ; 6(6): 1839-1851, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33336115

RESUMO

Tissue regeneration based on the utilization of artificial soft materials is considered a promising treatment for bone-related diseases. Here, we report cranial bone regeneration promoted by hydrogels that contain parathyroid hormone (PTH) peptide PTH(1-34) and nano-hydroxyapatite (nHAP). A combination of the positively charged natural polymer chitosan (CS) and negatively charged sodium alginate led to the formation of hydrogels with porous structures, as shown by scanning electron microscopy. Rheological characterizations revealed that the mechanical properties of the hydrogels were almost maintained upon the addition of nHAP and PTH(1-34). In vitro experiments showed that the hydrogel containing nHAP and PTH(1-34) exhibited strong biocompatibility and facilitated osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) via the Notch signaling pathway, as shown by the upregulated expression of osteogenic-related proteins. We found that increasing the content of PTH(1-34) in the hydrogels resulted in enhanced osteogenic differentiation of BMSCs. Implantation of the complex hydrogel into a rat cranial defect model led to efficient bone regeneration compared to the rats treated with the hydrogel alone or with nHAP, indicating the simultaneous therapeutic effect of nHAP and PTH during the treatment process. Both the in vitro and in vivo results demonstrated that simultaneously incorporating nHAP and PTH into hydrogels shows promise for bone regeneration, suggesting a new strategy for tissue engineering and regeneration in the future.

16.
Front Cell Dev Biol ; 9: 837777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111765

RESUMO

Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.

17.
Front Cell Dev Biol ; 9: 833420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295968

RESUMO

Intervertebral disc degeneration (IDD) has been considered as the primary pathological mechanism that underlies low back pain. Understanding the molecular mechanisms underlying human IDD is imperative for making strategies to treat IDD-related diseases. Herein, we report the molecular programs, lineage progression patterns, and paths of cellular communications during the progression of IDD using single-cell RNA sequencing (scRNA-seq) on nucleus pulposus (NP) cells from patients with different grades of IDD undergoing discectomy. New subtypes of cells and cell-type-specific gene signatures of the metabolic homeostatic NP cells (Met NPC), adhesive NP cells (Adh NPC), inflammatory response NP cells (IR NPC), endoplasmic reticulum stress NP cells (ERS NPC), fibrocartilaginous NP cells (Fc NPC), and CD70 and CD82+ progenitor NP cells (Pro NPC) were identified. In the late stage of IDD, the IR NPC and Fc NPC account for a large proportion of NPC. Importantly, immune cells including macrophages, T cells, myeloid progenitors, and neutrophils were also identified, and further analysis showed that significant intercellular interaction between macrophages and Pro NPC occurred via MIF (macrophage migration inhibitory factor) and NF-kB signaling pathways during the progression of IDD. In addition, dynamic polarization of macrophage M1 and M2 cell subtypes was found in the progression of IDD, and gene set functional enrichment analysis suggested a significant role of the macrophage polarization in regulating cell metabolism, especially the Pro NPC. Finally, we found that the NP cells in the late degenerative stage were mainly composed of the cell types related to inflammatory and endoplasmic reticulum (ER) response, and fibrocartilaginous activity. Our results provided new insights into the identification of NP cell populations at single-cell resolution and at the relatively whole-transcriptome scale, accompanied by cellular communications between immune cells and NP cells, and discriminative markers in relation to specific cell subsets. These new findings present clues for effective and functional manipulation of human IDD-related bioremediation and healthcare.

18.
JOR Spine ; 4(4): e1182, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005448

RESUMO

Although painkillers could alleviate some of the symptoms, there are no drugs that really cope with the intervertebral disc degeneration (IDD) at present, so it is urgent to find a cure that could prevent or reverse the progression of IDD. During the development of IDD, the cartilaginous end plates (EPs) become hypertrophic and porous by the increase of osteoclast activities, which hinder the penetration of nutrition. The compositional and structural degeneration of the EP may cause both nutritional as well as mechanical impairment to the nucleus pulposus (NP) so that developing drugs that target the degenerating EP may be another option in addition to targeting the NP. In the lumbar spine instability mouse model, we found increased porosity in the cartilaginous EP, accompanied by the decrease in total intervertebral disc volume. Panax notoginseng saponins (PNS), a traditional Chinese patent drug with anti-osteoclastogenesis effect, could alleviate IDD by inhibiting aberrant osteoclast activation in the porous EP. Further in vitro experiment validated that PNS inhibit the receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation, while the transcriptional activation of PAX6 may be involved in the mechanism, which had been defined as an inhibitory transcription factor in osteoclastogenesis. These findings may provide a novel therapeutic strategy for IDD.

19.
Cell Mol Neurobiol ; 41(6): 1373-1387, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32594381

RESUMO

The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.


Assuntos
Calpaína/biossíntese , Regulação para Baixo/fisiologia , MicroRNAs/biossíntese , Óxido Nítrico Sintase Tipo I/biossíntese , Estresse Oxidativo/fisiologia , Animais , Calpaína/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Regulação para Baixo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Epigenomics ; 12(16): 1419-1441, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627576

RESUMO

Aim: To explore the potential functions and mechanism of N6.methyladenosine (m6A) abnormality of RNAs in nucleus pulposus from the intervertebral disc degeneration (IDD). Materials & methods: We performed rat model, m6A epitranscriptomic microarray, bioinformatics analysis and metabolomics. Results: In IDD, most of the differentially methylated RNAs showed a significant demethylation situation. The competing endogenous RNA network LOC102555094/miR-431/GSK-3ß combining downstream Wnt pathway were identified in bioinformatics analysis. For metabolomics, activation of Wnt pathway led to reprogramming of glucose metabolism and enzyme activation of PKM2. Finally, quantitative real-time PCR and methylated RNA immunoprecipitation coupled with quantitative real-time PCR revealed the positive correlation between demethylation of LOC102555094 and expression of both FTO and ZFP217. Conclusion:LOC102555094 might be demethylated by ZFP217, activating FTO and LOC102555094/miR-431/GSK-3ß/Wnt played a crucial role in IDD.


Assuntos
Adenosina/análogos & derivados , Degeneração do Disco Intervertebral/genética , RNA Longo não Codificante , RNA Mensageiro , Animais , Masculino , Análise em Microsséries , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA