Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408037

RESUMO

The authors wish to make the following corrections to the published paper [...].

2.
Materials (Basel) ; 15(3)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35161140

RESUMO

Steel-timber composite (STC) systems are considered as an environmentally friendly alternative to steel-concrete composite (SCC) structures due to its advantages including high strength-to-weight ratio, lower carbon footprint, and fully dry construction. Bolts and screws are the most commonly used connectors in STC system; however, they probably make great demands on the accuracy of construction because of the predrilling in both the timber slabs and steel girder fangles. To address this issue, the STC connections with grouted stud connectors (GSC) were proposed in this paper. In addition, stud connectors can also provide outstanding stiffness and load-bearing capacity. The mechanical characteristic of the GSC connections was exploratorily investigated by finite element (FE) modeling. The designed parameters for the FE models include stud diameter, stud strength, angle of outer layer of cross-laminated timber (CLT) panel, tapered groove configurations, and thickness of CLT panel. The numerical results indicated that the shear capacity and stiffness of the GSC connections were mainly influenced by stud diameter, stud strength, angle of outer layer of CLT panel, and the angle of the tapered grooves. Moreover, the FE simulated shear capacity of the GSC connections were compared with the results predicted by the available calculation formulas in design codes and literatures. Finally, the group effect of the GSC connections with multiple rows of studs was discussed based on the numerical results and parametric analyses. An effective row number of studs was proposed to characterize the group effect of the GSC connections.

3.
Materials (Basel) ; 13(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560140

RESUMO

This paper presents an experimental evaluation of the fire resistance of glued-in rod timber joints using epoxy resin, with and without modification. A heat-resistant modified resin was designed by adding inorganic additives into the epoxy resin, aiming to improve the heat resistance. Joints that were made using the modified epoxy resin at room temperature showed a bearing capacity comparable to those with commercial epoxy resin. Twenty-one joint specimens with the modified epoxy resin and six with a commercial epoxy resin were tested in a fire furnace to evaluate the fire resistance. The main failure mode was the pull-out of the rod, which is typical in fire tests of this type of joints. As to the effects of the test parameters, this study considered the effects of adhesive types, sectional sizes, stress levels, and fireproof coatings. The test results showed that the fire resistance period of a joint can be evidently improved by modifying the resin and using the fireproof coating, as the improvements reached 73% and 35%, respectively, compared with the joint specimens with commercial epoxy resin. It was also found that, for all specimens, the fire resistance period decreased with an increase in the stress level and increased with an increase in the sectional sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA