Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945195

RESUMO

Vinyl chloride (VC), a known human carcinogen, is often formed in groundwater (GW) by incomplete reductive dechlorination of chlorinated ethenes. An integrated microbial ecology approach involving bacterial enrichments and isolations, carbon stable-isotope probing (SIP) and metagenome and genome sequencing was applied to ethene-fed GW microcosms that rapidly transitioned to aerobic growth on VC. Actinobacteria, Proteobacteria and Bacteroidetes dominated the microbial communities in ethene- and VC-grown cultures. SIP with 13C2-VC demonstrated that Nocardioides spp. significantly participated in carbon uptake from VC (52.1%-75.7% enriched in heavy fractions). Sediminibacterium, Pedobacter and Pseudomonas spp. also incorporated 13C from VC into genomic DNA. Ethene- and VC-assimilating Nocardioides sp. strain XL1 was isolated. Sequencing revealed a large (∼300 kbp) plasmid harboring genes encoding alkene monooxygenase and epoxyalkane: coenzyme M transferase, enzymes known to participate in aerobic VC and ethene biodegradation. The plasmid was 100% identical to pNOCA01 found in VC-assimilating Nocardioides sp. strain JS614. Metagenomic analysis of enrichment cultures indicated other bacteria implicated in carbon uptake from VC possessed the genetic potential to detoxify epoxides via epoxide hydrolase or glutathione S-transferase (Pseudomonas) and/or metabolize VC epoxide breakdown products and downstream VC metabolites. This study provides new functional insights into aerobic VC metabolism within a GW microbial community.


Assuntos
Bactérias Aeróbias/metabolismo , Biodegradação Ambiental , Compostos de Epóxi/metabolismo , Água Subterrânea/microbiologia , Cloreto de Vinil/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias Aeróbias/genética , Carbono/metabolismo , Liases de Carbono-Enxofre/genética , Epóxido Hidrolases/metabolismo , Etilenos/metabolismo , Glutationa Transferase/metabolismo , Humanos , Metagenoma , Metagenômica , Oxigenases/genética , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA