RESUMO
Lymphodepletion and infusion of autologous expanded tumour-infiltrating lymphocytes is effective therapy for patients with malignant melanoma. Antitumour responses are likely to be mediated by HLA class I- and II-restricted immune responses directed at tumour antigens. We assessed whether the peripheral blood of normal HLA-matched siblings of patients with melanoma could be used to generate lymphocytes with antimelanoma activity for adoptive immunotherapy after allogeneic blood or marrow transplantation. Melanoma cell lines were derived from two donors and were used to stimulate the mononuclear cells of three HLA-identical siblings. CD4(+) clones dominated cultures. Of these, approximately half were directly cytotoxic towards recipient melanoma cells and secreted interferon-gamma in response to tumour stimulation. More than half of the noncytotoxic clones also secreted interferon-gamma after melanoma stimulation. No CD4(+) clones responded to stimulation with recipient haemopoietic cells. The majority of CD8(+) clones directly lysed recipient melanoma, but did not persist in long-term culture in vitro. No crossreactivity with recipient haemopoietic cells was observed. The antigenic target of one CD4(+) clone was determined to be an HLA-DR11-restricted MAGE-3 epitope. Antigenic targets of the remaining clones were not elucidated, but appeared to be restricted through a non-HLA-DR class II molecule. We conclude that the blood of allogeneic HLA-matched sibling donors contains melanoma-reactive lymphocyte precursors directed at tumour-associated antigens. Adoptive immunotherapy with unselected or ex vivo-stimulated donor lymphocytes after allogeneic stem cell transplantation has a rational basis for the treatment of malignant melanoma.
Assuntos
Antígenos HLA/biossíntese , Melanoma/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Células Clonais , Testes Imunológicos de Citotoxicidade , Epitopos/imunologia , Teste de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Interferon gama/metabolismo , Melanoma/patologia , Melanoma/terapia , Irmãos , Transplante de Células-Tronco , Linfócitos T Citotóxicos/transplante , Células Tumorais CultivadasRESUMO
Cell surface expression of HLA class I/peptide complexes on tumor cells is a key step in the generation of T-cell-based immune responses. Several genetic defects underlying the lack of HLA class I expression have been characterized. Here we describe another molecular mechanism that accounts for the complete absence of HLA class I molecule expression in a tumor line (MSR3-mel) derived from a melanoma patient. Hypermethylation of the MSR3-mel DNA, specifically of HLA-A and -B genes, was identified, which resulted in loss of HLA class I heavy chain transcription. Treatment of MSR3-mel cells with the demethylating agent 5'-aza-2'-deoxycytidine (DAC) allowed HLA-A and -B transcription, restoring cell surface expression of HLA class I antigens and tumor cell recognition by MAGE-specific cytotoxic T lymphocytes. The MSR3-mel line was obtained from a metastatic lesion of a nonresponding patient undergoing MAGE-3.A1 T-cell-based peptide immunotherapy. It is tempting to speculate that the hypermethylation-induced lack of HLA class I expression is the cause of the impaired response to vaccination. This study provides the first evidence that DNA hypermethylation is used by human neoplastic cells to switch off HLA class I genes, thus providing a new route of escape from immune recognition.
Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Metilação de DNA , Genes MHC Classe I , Melanoma/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Azacitidina/análogos & derivados , Decitabina , Epitopos de Linfócito T , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Humanos , Melanoma/genética , Melanoma/imunologia , Células Tumorais CultivadasRESUMO
One of the major limitations of tumor-specific vaccination is the generation of antigen-loss variants that are able to escape the immune response elicited by a monoantigenic peptide epitope. Here, we report the identification of a new HLA-B*3701-restricted epitope shared by four different members of the MAGE family. Peripheral blood lymphocytes isolated from a melanoma patient were stimulated in vitro with the autologous HLA-negative melanoma line transfected with autologous HLA B*3701 molecule. This protocol led to the induction of tumor-specific, B*3701-restricted CTLs specific for a peptide epitope encoded by codons 127-136 of the gene MAGE-1. The same epitope is also encoded by the homologous region of three other members of the MAGE family, MAGE-2, -3, and -6. Consistent with the notion that the peptide encoded by MAGE-1 codons 127-136 is, indeed, processed from the proteins encoded by all four MAGE family members, the CTLs were able to specifically recognize Cos-7 cells cotransfected with HLA-B*3701 and any of these MAGE genes. Moreover, the CTLs also recognized a MAGE-6-positive melanoma line transfected with the B*3701 molecule. These findings allow the inclusion of a new set of tumor patients into clinical cancer vaccination trials. Furthermore, they suggest that some promiscuous peptide epitopes shared by different members of the MAGE family might be less prone to escape the immune response by generation of MAGE antigen loss variants.