Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Chem Biol ; 31(2): 326-337.e11, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016478

RESUMO

PIM kinases have important pro-tumorigenic roles and mediate several oncogenic traits, including cell proliferation, survival, and chemotherapeutic resistance. As a result, multiple PIM inhibitors have been pursued as investigational new drugs in cancer; however, response to PIM inhibitors in solid tumors has fallen short of expectations. We found that inhibition of PIM kinase activity stabilizes protein levels of all three PIM isoforms (PIM1/2/3), and this can promote resistance to PIM inhibitors and chemotherapy. To overcome this effect, we designed PIM proteolysis targeting chimeras (PROTACs) to target PIM for degradation. PIM PROTACs effectively downmodulated PIM levels through the ubiquitin-proteasome pathway. Importantly, degradation of PIM kinases was more potent than inhibition of catalytic activity at inducing apoptosis in prostate cancer cell line models. In conclusion, we provide evidence of the advantages of degrading PIM kinases versus inhibiting their catalytic activity to target the oncogenic functions of PIM kinases.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fosforilação , Apoptose , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1
2.
Oncogene ; 43(6): 406-419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097734

RESUMO

Lipid droplets (LDs) are dynamic organelles with a neutral lipid core surrounded by a phospholipid monolayer. Solid tumors exhibit LD accumulation, and it is believed that LDs promote cell survival by providing an energy source during energy deprivation. However, the precise mechanisms controlling LD accumulation and utilization in prostate cancer are not well known. Here, we show peroxisome proliferator-activated receptor α (PPARα) acts downstream of PIM1 kinase to accelerate LD accumulation and promote cell proliferation in prostate cancer. Mechanistically, PIM1 inactivates glycogen synthase kinase 3 beta (GSK3ß) via serine 9 phosphorylation. GSK3ß inhibition stabilizes PPARα and enhances the transcription of genes linked to peroxisomal biogenesis (PEX3 and PEX5) and LD growth (Tip47). The effects of PIM1 on LD accumulation are abrogated with GW6471, a specific inhibitor for PPARα. Notably, LD accumulation downstream of PIM1 provides a significant survival advantage for prostate cancer cells during nutrient stress, such as glucose depletion. Inhibiting PIM reduces LD accumulation in vivo alongside slow tumor growth and proliferation. Furthermore, TKO mice, lacking PIM isoforms, exhibit suppression in circulating triglycerides. Overall, our findings establish PIM1 as an important regulator of LD accumulation through GSK3ß-PPARα signaling axis to promote cell proliferation and survival during nutrient stress.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta , Gotículas Lipídicas/patologia , PPAR alfa/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética
3.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042842

RESUMO

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Masculino , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Hipóxia , Proteômica , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Invasividade Neoplásica
4.
Nat Commun ; 11(1): 3662, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699280

RESUMO

Large-scale, unbiased proteomics studies are constrained by the complexity of the plasma proteome. Here we report a highly parallel protein quantitation platform integrating nanoparticle (NP) protein coronas with liquid chromatography-mass spectrometry for efficient proteomic profiling. A protein corona is a protein layer adsorbed onto NPs upon contact with biofluids. Varying the physicochemical properties of engineered NPs translates to distinct protein corona patterns enabling differential and reproducible interrogation of biological samples, including deep sampling of the plasma proteome. Spike experiments confirm a linear signal response. The median coefficient of variation was 22%. We screened 43 NPs and selected a panel of 5, which detect more than 2,000 proteins from 141 plasma samples using a 96-well automated workflow in a pilot non-small cell lung cancer classification study. Our streamlined workflow combines depth of coverage and throughput with precise quantification based on unique interactions between proteins and NPs engineered for deep and scalable quantitative proteomic studies.


Assuntos
Proteínas Sanguíneas/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Coroa de Proteína/análise , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/química , Carcinoma Pulmonar de Células não Pequenas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Diagnóstico Diferencial , Feminino , Voluntários Saudáveis , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Projetos Piloto , Coroa de Proteína/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA