Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PeerJ ; 11: e14995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915655

RESUMO

The incorporation of coral species with massive (e.g., boulder, brain) morphologies into reef restoration is critical to sustain biodiversity and increase coral cover on degraded reef ecosystems. However, fragments and colonies of massive corals outplanted in Miami-Dade County, Florida, US, can experience intense predation by fish within the first week of outplanting, resulting in >70% mortality. Here, we tested for the first time the potential benefit of feeding corals powdered Dictyota, a brown reef alga that is chemically defended against grazing, to determine if exposure to Dictyota can confer chemical protection to coral fragments and reduce the impacts of fish predation after outplanting. We found that feeding corals every 2 to 3 days for 2 months with dried and powdered Dictyota prior to outplanting significantly reduced predation levels on Orbicella faveolata and Montastraea cavernosa fragments (with less than 20% of the fragments experiencing predation up to 1-month post-outplanting). We also found that a single exposure to Dictyota at a high concentration 1 to 2 days prior to outplanting significantly reduced predation for six coral species within the first 24 h following outplanting. Thus, feeding corals dry Dictyota ex situ prior to outplanting appears to confer protection from fish predation during the critical first days to weeks after outplanting when predation impacts are commonly high. This simple and cheap method can be easily scaled up for corals kept ex situ prior to outplanting, resulting in an increase in restoration efficiency for massive corals in areas with high fish predation.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Comportamento Predatório , Peixes
2.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34666521

RESUMO

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/fisiologia , Censos , Recifes de Corais , Florida
3.
Proc Biol Sci ; 288(1946): 20210177, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33653132

RESUMO

Climate-driven reef decline has prompted the development of next-generation coral conservation strategies, many of which hinge on the movement of adaptive variation across genetic and environmental gradients. This process is limited by our understanding of how genetic and genotypic drivers of coral bleaching will manifest in different environmental conditions. We reciprocally transplanted 10 genotypes of Acropora cervicornis across eight sites along a 60 km span of the Florida Reef Tract and documented significant genotype × environment interactions in bleaching response during the severe 2015 bleaching event. Performance relative to site mean was significantly different between genotypes and can be mostly explained by ensemble models of correlations with genetic markers. The high explanatory power was driven by significant enrichment of loci associated DNA repair, cell signalling and apoptosis. No genotypes performed above (or below) bleaching average at all sites, so genomic predictors can provide practitioners with 'confidence intervals' about the chance of success in novel habitats. These data have important implications for assisted gene flow and managed relocation, and their integration with traditional active restoration.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Florida , Interação Gene-Ambiente , Genótipo
4.
PeerJ ; 8: e9978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062430

RESUMO

As coral reefs continue to decline globally, coral restoration practitioners have explored various approaches to return coral cover and diversity to decimated reefs. While branching coral species have long been the focus of restoration efforts, the recent development of the microfragmentation coral propagation technique has made it possible to incorporate massive coral species into restoration efforts. Microfragmentation (i.e., the process of cutting large donor colonies into small fragments that grow fast) has yielded promising early results. Still, best practices for outplanting fragmented corals of massive morphologies are continuing to be developed and modified to maximize survivorship. Here, we compared outplant success among four species of massive corals (Orbicella faveolata, Montastraea cavernosa, Pseudodiploria clivosa, and P. strigosa) in Southeast Florida, US. Within the first week following coral deployment, predation impacts by fish on the small (<5 cm2) outplanted colonies resulted in both the complete removal of colonies and significant tissue damage, as evidenced by bite marks. In our study, 8-27% of fragments from four species were removed by fish within one week, with removal rates slowing down over time. Of the corals that remained after one week, over 9% showed signs of fish predation. Our findings showed that predation by corallivorous fish taxa like butterflyfishes (Chaetodontidae), parrotfishes (Scaridae), and damselfishes (Pomacentridae) is a major threat to coral outplants, and that susceptibility varied significantly among coral species and outplanting method. Moreover, we identify factors that reduce predation impacts such as: (1) using cement instead of glue to attach corals, (2) elevating fragments off the substrate, and (3) limiting the amount of skeleton exposed at the time of outplanting. These strategies are essential to maximizing the efficiency of outplanting techniques and enhancing the impact of reef restoration.

5.
PLoS One ; 15(2): e0229147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084176

RESUMO

Submerged aquatic vegetation (SAV) communities display complex patch dynamics at seascape scales that are presently poorly understood as most studies of disturbance on SAV habitats have focused on changes in biomass at small, quadrat-level scales. In this study, analyses of remote sensing imagery and population modelling were applied to understand SAV patch dynamics and forecast the fate of these important communities in Biscayne Bay, Miami, Florida, US. We evaluated how the proximity of freshwater canals influences seagrass-dominated SAV patch dynamics and, in turn, how patch-size structure influences the stability of seagrass seascapes under different salinity scenarios. Seagrass fragmentation rates were higher in sites adjacent to freshwater canals compared to sites distant from the influences of freshwater deliveries. Furthermore, we documented a clear trend in patch mortality rates with respect to patch size, with the smallest patches (50 m2) undergoing 57% annual mortality on average. The combination of higher fragmentation rates and the higher mortality of smaller seagrass patches in habitats exposed to pulses of low salinity raises concern for the long-term persistence of seagrass meadows in nearshore urban habitats of Biscayne Bay that are presently targets of Everglades restoration. Our model scenarios that simulated high fragmentation rates resulted in SAV population collapses, regardless of SAV recruitment rates. The combined remote sensing and population modelling approach used here provides evaluation and predictive tools that can be used by managers to track seagrass status and stress-response at seascape levels not available previously for the seagrasses of South Florida.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/fisiologia , Exposição Ambiental/efeitos adversos , Água Doce/química , Modelos Estatísticos , Biodiversidade , Dinâmica Populacional
6.
Mar Pollut Bull ; 150: 110742, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31787339

RESUMO

Macroalgal blooms are becoming an increasing problem in coastal regions worldwide and have been associated with a widespread decline of seagrass habitats. It is critical to measure macroalgal bloom (MB) impacts at broad spatial scales since seagrass seascape characteristics can influence feedback processes that regulate the resilience of seagrass ecosystems. We assessed the broad-scale spatial impacts of an MB formed by Anadyomene spp. on the seagrass seascapes in Biscayne Bay (Miami, US) using a multi-scale seascape approach. By integrating field and remote sensing data, our multi-scale approach showed significant reductions in seagrass foliage cover and a seascape structure transformation across the bloom extent. The landscape cover and patch extensiveness declined after the MB peak. Other spatial pattern metrics also showed that the seagrass seascape structure got fragmented. We demonstrated that a persistent MB could transform the structure of seagrass seascapes, hindering the resilience of seagrass habitats.


Assuntos
Clorófitas/crescimento & desenvolvimento , Ecossistema , Alga Marinha , Baías , Eutrofização , Florida
7.
Ecol Evol ; 9(8): 4518-4531, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031924

RESUMO

As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter- and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high- and low-density aggregations of the threatened coral Acropora cervicornisin the Caribbean. We find that high-density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet-ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density-dependent factor that may impact traits important for the structure and function of coral reefs.

8.
PLoS One ; 13(11): e0198539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403667

RESUMO

The Biscayne Bay Coastal Wetlands (BBCW) project of the Comprehensive Everglades Restoration Plan (CERP) aims to reduce point-source freshwater discharges and spread freshwater flow along the mainland shoreline of southern Biscayne Bay. These actions will be taken to approximate conditions in the coastal wetlands and bay that existed prior to construction of canals and water control structures. An increase in pink shrimp (Farfantepenaeus duorarum) density to ≥ 2 individuals m-2 during the wet season (i.e., August-October) along the mainland shoreline was previously proposed as an indication of BBCW success. This study examined pre-BBCW baseline densities and compared them with the proposed target. Densities were monitored by seasonal (wet, dry) throw-trapping (1 m2 replicated in triplicate) at 47 sites along ~22 km of the southwestern Biscayne Bay coastline over 10 years (2007-2016). Densities varied across years and were most often higher in dry seasons. Quantile regression revealed density limitation by four habitat attributes: water temperature (°C), depth (m), salinity (ppt), and submerged aquatic vegetation (SAV: % cover). Procrustean analyses that tested for concordance between the spatial and temporal distributions of shrimp densities and habitat metrics found that water temperature, water depth, and salinity explained ~ 28%, 28%, and 22% of density variability, respectively. No significant relationship with SAV was observed. Hierarchical clustering was used to identify spatially and temporally similar groupings of pink shrimp densities by sites or season-years. Significant groupings were then investigated with respect to potentially limiting habitat attributes. Six site and four year-season clusters were identified. Although habitat attributes significantly differed among spatial clusters, within-cluster median pink shrimp densities did not correlate with within-cluster minima, maxima, medians, or standard deviations of habitat attributes. Overall, pink shrimp density ([Formula: see text] = 0.86, SD = 1.32 shrimp m-2) was significantly lower (t(α = 0.10,2),939 = -26.53, P <0.0001) than the 2 shrimp m-2 CERP Interim Goal target. Pink shrimp density corresponded significantly with salinity and appeared limited to density < 2 shrimp m-2 by salinity < ~18 ppt. Salinity is an environmental attribute that will be directly influenced by CERP implementation.


Assuntos
Ecossistema , Penaeidae , Áreas Alagadas , Animais , Demografia , Monitoramento Ambiental , Salinidade , Temperatura
9.
PeerJ ; 6: e4494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682405

RESUMO

Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide through the processes of bleaching and disease. These major contributors to coral mortality are both closely linked with thermal stress intensified by anthropogenic climate change. Disease outbreaks typically follow bleaching events, but a direct positive linkage between bleaching and disease has been debated. By tracking 152 individual coral ramets through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed a highly significant negative correlation between bleaching and disease in the Caribbean staghorn coral, Acropora cervicornis. To explain these results, we propose a mechanism for transient immunological protection through coral bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont modulation of host immunological function. We contextualize this hypothesis within an ecological perspective in order to generate testable predictions for future investigation.

10.
Mol Ecol ; 27(5): 1103-1119, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29412490

RESUMO

As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways, it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over 30 genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of 20 genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.


Assuntos
Antozoários/genética , Espécies em Perigo de Extinção , Variação Genética , Estresse Fisiológico , Animais , Mudança Climática , Conservação dos Recursos Naturais , Florida , Marcadores Genéticos , Temperatura , Termotolerância/genética
11.
Ecol Evol ; 7(16): 6188-6200, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861224

RESUMO

Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis, across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis, including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

12.
PLoS One ; 12(3): e0174000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319134

RESUMO

The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/genética , Espécies em Perigo de Extinção , Meio Ambiente , Genótipo , Animais , Antozoários/fisiologia , Conservação dos Recursos Naturais , Fenótipo , Taxa de Sobrevida
13.
PeerJ ; 4: e2597, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781176

RESUMO

Reef restoration activities have proliferated in response to the need to mitigate coral declines and recover lost reef structure, function, and ecosystem services. Here, we describe the recent shift from costly and complex engineering solutions to recover degraded reef structure to more economical and efficient ecological approaches that focus on recovering the living components of reef communities. We review the adoption and expansion of the coral gardening framework in the Caribbean and Western Atlantic where practitioners now grow and outplant 10,000's of corals onto degraded reefs each year. We detail the steps for establishing a gardening program as well as long-term goals and direct and indirect benefits of this approach in our region. With a strong scientific basis, coral gardening activities now contribute significantly to reef and species recovery, provide important scientific, education, and outreach opportunities, and offer alternate livelihoods to local stakeholders. While challenges still remain, the transition from engineering to ecological solutions for reef degradation has opened the field of coral reef restoration to a wider audience poised to contribute to reef conservation and recovery in regions where coral losses and recruitment bottlenecks hinder natural recovery.

14.
PLoS One ; 10(11): e0141302, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580977

RESUMO

Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and <50% of the A. cervicornis population along the FRT, the remaining wild staghorn population, along with the rapidly increasing restored populations, continue to fulfill important functional roles on coral reefs by providing essential habitat and refuge to other reef organisms. Although the effects of damselfish predation are, and will continue to be, pervasive, successful restoration efforts and strategic coral transplantation designs may help overcome damselfish damage by rapidly increasing A. cervicornis cover and abundance while also providing important information to educate future conservation and management decisions.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Peixes/fisiologia , Animais , Aquicultura , Comportamento Competitivo/fisiologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Comportamento Predatório/fisiologia , Territorialidade
15.
PLoS One ; 9(9): e107253, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268812

RESUMO

BACKGROUND: The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata) has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic. METHODOLOGY/PRINCIPAL FINDINGS: Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites) in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation) was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3) was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates. CONCLUSION/SIGNIFICANCE: The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate nursery species and provide optimism for the potential role that active propagation can play in the recovery of this keystone species.


Assuntos
Antozoários/crescimento & desenvolvimento , Dinoflagellida/fisiologia , Animais , Antozoários/genética , Recifes de Corais , República Dominicana , Florida , Genótipo , Repetições de Microssatélites , Tipagem Molecular , Simbiose
16.
PLoS One ; 6(8): e23047, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853066

RESUMO

BACKGROUND: Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity. METHODOLOGY/PRINCIPAL FINDINGS: Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%-39%) was documented for inshore habitats where temperatures were <11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1-2 orders of magnitude higher for most species. CONCLUSIONS/SIGNIFICANCE: The cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the "oases" of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover.


Assuntos
Antozoários/fisiologia , Temperatura Baixa , Recifes de Corais , Água do Mar , Animais , Florida , Geografia , Oceanos e Mares , Análise de Sobrevida , Taxa de Sobrevida
17.
Mar Pollut Bull ; 62(10): 2157-69, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821268

RESUMO

A relative risk assessment of biosolids disposal alternatives for cruise ships is presented in this paper. The area of study encompasses islands and marine waters of the Caribbean Sea. The objective was to evaluate relative human health and ecological risks of (a) dewatering/incineration, (b) landing the solids for disposal, considering that in some countries land-disposed solids might be discharged in the near-shore environment untreated, and (c) deep ocean disposal. Input to the Bayesian assessment consisted of professional judgment based on available literature and modeling information, data on constituent concentrations in cruise ship biosolids, and simulations of constituent concentrations in Caribbean waters assuming ocean disposal. Results indicate that human health and ecological risks associated with land disposal and shallow ocean disposal are higher than those of the deep ocean disposal and incineration. For incineration, predicted ecological impacts were lower relative to deep ocean disposal before considering potential impacts of carbon emissions.


Assuntos
Esgotos/análise , Navios/métodos , Gerenciamento de Resíduos/métodos , Poluição da Água/prevenção & controle , Região do Caribe , Conservação dos Recursos Naturais , Humanos , Medição de Risco , Esgotos/estatística & dados numéricos , Navios/estatística & dados numéricos , Eliminação de Resíduos Líquidos/métodos , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/estatística & dados numéricos
18.
PLoS One ; 5(11): e13969, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21125021

RESUMO

BACKGROUND: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Estresse Fisiológico/fisiologia , Temperatura , Animais , Região do Caribe , Clima , Ecossistema , Monitoramento Ambiental , Geografia , Oceanos e Mares , Análise de Sobrevida , Movimentos da Água
19.
PLoS One ; 5(8): e12327, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20808833

RESUMO

Distinguishing management effects from the inherent variability in a system is a key consideration in assessing reserve efficacy. Here, we demonstrate how seascape heterogeneity, defined as the spatial configuration and composition of coral reef habitats, can mask our ability to discern reserve effects. We then test the application of a landscape approach, utilizing advances in benthic habitat mapping and GIS techniques, to quantify this heterogeneity and alleviate the confounding influence during reserve assessment. Seascape metrics were quantified at multiple spatial scales using a combination of spatial image analysis and in situ surveys at 87 patch reef sites in Glover's Reef Lagoon, Belize, within and outside a marine reserve enforced since 1998. Patch reef sites were then clustered into classes sharing similar seascape attributes using metrics that correlated significantly to observed variations in both fish and coral communities. When the efficacy of the marine reserve was assessed without including landscape attributes, no reserve effects were detected in the diversity and abundance of fish and coral communities, despite 10 years of management protection. However, grouping sites based on landscape attributes revealed significant reserve effects between site classes. Fish had higher total biomass (1.5x) and commercially important biomass (1.75x) inside the reserve and coral cover was 1.8 times greater inside the reserve, though direction and degree of response varied by seascape class. Our findings show that the application of a landscape classification approach vastly improves our ability to evaluate the efficacy of marine reserves by controlling for confounding effects of seascape heterogeneity and suggests that landscape heterogeneity should be considered in future reserve design.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Animais , Antozoários/classificação , Eucariotos/classificação , Peixes/classificação , Oceanos e Mares
20.
Proc Natl Acad Sci U S A ; 104(29): 12035-9, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17606914

RESUMO

Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.


Assuntos
Antozoários/fisiologia , Desastres , Animais , Temperatura Baixa , Coleta de Dados , Florida , Calefação , Oceanos e Mares , Análise de Regressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA