Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Enzyme Res ; 2015: 404607, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26576296

RESUMO

Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

2.
Microbiology (Reading) ; 160(Pt 2): 406-417, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275100

RESUMO

The exopolyphosphatase (Ppx) of Pseudomonas aeruginosa is encoded by the PA5241 gene (ppx). Ppx catalyses the hydrolysis of inorganic polyphosphates to orthophosphate (Pi). In the present work, we identified and characterized the promoter region of ppx and its regulation under environmental stress conditions. The role of Ppx in the production of several virulence factors was demonstrated through studies performed on a ppx null mutant. We found that ppx is under the control of two interspaced promoters, dually regulated by nitrogen and phosphate limitation. Under nitrogen-limiting conditions, its expression was controlled from a σ(54)-dependent promoter activated by the response regulator NtrC. However, under Pi limitation, the expression was controlled from a σ(70) promoter, activated by PhoB. Results obtained from the ppx null mutant demonstrated that Ppx is involved in the production of virulence factors associated with both acute infection (e.g. motility-promoting factors, blue/green pigment production, C6-C12 quorum-sensing homoserine lactones) and chronic infection (e.g. rhamnolipids, biofilm formation). Molecular and physiological approaches used in this study indicated that P. aeruginosa maintains consistently proper levels of Ppx regardless of environmental conditions. The precise control of ppx expression appeared to be essential for the survival of P. aeruginosa and the occurrence of either acute or chronic infection in the host.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Hidrolases Anidrido Ácido/genética , Deleção de Genes , Estresse Fisiológico
3.
Microbiol Res ; 167(6): 317-25, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22192836

RESUMO

Through the use of molecular and biochemical experiments and bioinformatic tools, this work demonstrates that the PA4921 gene of the Pseudomonas aeruginosa PAO1 genome is a gene responsible for cholinesterase (ChoE) activity. Similar to the acetylcholinesterase (AchE) of Zea mays, this ChoE belongs to the SGNH hydrolase family. In mature ChoE, i.e., without a signal peptide, (18)Ser, (78)Gly, (127)N, and (268)H are conserved aminoacyl residues. Acetylthiocholine (ATC) and propionylthiocholine (PTC) are substrates of this enzyme, but butyrylcholine is an inhibitor. The enzyme also catalyzes the hydrolysis of the artificial esters p-nitrophenyl propionate (pNPP) and p-nitrophenyl butyrate (pNPB) but with lower catalytic efficiency with respect to ATC or PTC. The second difference is that pNPP and pNPB did not produce inhibition at high substrate concentrations, as occurred with ATC and PTC. These differences plus preliminary biochemical and kinetic studies with alkylammonium compounds led us to propose that this enzyme is an acetylcholinesterase (AchE) or propionylcholinesterase. Studies performed with the purified recombinant enzyme indicated that the substrate saturation curves and the catalytic mechanism are similar to those properties described for mammalian AchEs. Therefore, the results of this work suggest that the P. aeruginosa ChoE is an AchE that may also be found in Pseudomonas fluorescens.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Acetilcolinesterase/química , Acetilcolinesterase/classificação , Acetiltiocolina/metabolismo , Colina/análogos & derivados , Colina/metabolismo , Sequência Conservada , Inibidores Enzimáticos/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Filogenia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiocolina/análogos & derivados , Tiocolina/metabolismo , Zea mays/enzimologia , Zea mays/genética
4.
Biochim Biophys Acta ; 1814(7): 858-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515416

RESUMO

Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine (Pcho) to produce choline and inorganic phosphate. PchP belongs to the haloacid dehalogenase superfamily (HAD) and possesses the three characteristic motifs of this family: motif I ((31)D and (33)D), motif II ((166)S), and motif III ((242)K, (261)G, (262)D and (267)D), which fold to form the catalytic site that binds the metal ion and the phosphate moiety of Pcho. Based on comparisons to the PHOSPHO1 and PHOSPHO2 human enzymes and the choline-binding proteins of Gram-(+) bacteria, we selected residues (42)E and (43)E and the aromatic triplet (82)YYY(84) for site-directed mutagenesis to study the interactions with Pcho and p-nitrophenylphosphate as substrates of PchP. Because mutations in (42)E, (43)E and the three tyrosine residues affect both the substrate affinity and the inhibitory effect produced by high Pcho concentrations, we postulate that two sites, one catalytic and one inhibitory, are present in PchP and that they are adjacent and share residues.


Assuntos
Proteínas de Bactérias/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Pseudomonas aeruginosa/enzimologia , Compostos de Amônio Quaternário/metabolismo , Alcanos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Compostos de Amônio Quaternário/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Microbiol Res ; 166(5): 380-90, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20869215

RESUMO

Choline favors the pathogenesis of Pseudomonas aeruginosa because hemolytic phospholipase C and phosphorylcholine phosphatase (PchP) are synthesized as a consequence of its catabolism. The experiments performed here resulted in the identification of the factors that regulate both the catabolism of choline and the gene coding for PchP. We have also identified and characterized the promoter of the pchP gene, its transcriptional organization and the factors that affect its expression. Deletion analyses reveal that the region between -188 and -68 contains all controlling elements necessary for pchP expression: a hypothetical -12/-24 promoter element, a consensus sequence for the integration host factor (-141/-133), and a palindromic sequence resembling a binding site for a potential enhancer binding protein (-190/-174). Our data also demonstrate that choline catabolism and NtrC (nitrogen regulatory protein) are necessary for the full expression of pchP and is partially dependent on σ(54) factor.


Assuntos
Colina/metabolismo , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Polimerase Sigma 54/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , RNA Polimerase Sigma 54/genética , Deleção de Sequência , Fatores de Transcrição/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-20693680

RESUMO

Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine to produce choline and inorganic phosphate. Phosphorylcholine is released by the action of haemolytic phospholipase C (PlcH) on phosphatidylcholine or sphingomyelin. PchP belongs to the HAD superfamily and its activity is dependent on Mg2+, Zn2+ or Cu2+. The possible importance of PchP in the pathogenesis of P. aeruginosa, the lack of information about its structure and its low identity to other members of this family led us to attempt its crystallization in order to solve its three-dimensional structure. Crystals of the protein have been grown and diffraction data have been obtained to 2.7 A resolution. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=137.16, b=159.15, c=73.31 A, beta=117.89 degrees. Statistical analysis of the unit-cell contents and the self-rotation function suggest a tetrameric state of the molecule with 222 point-group symmetry.


Assuntos
Monoéster Fosfórico Hidrolases/química , Pseudomonas aeruginosa/enzimologia , Cristalização , Cristalografia por Raios X
7.
Biometals ; 23(2): 307-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20135339

RESUMO

Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg(2+) or Zn(2+). Mg(2+) produced identical activation at pH 5.0 and 7.4, but Zn(2+) was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn(2+) inhibited enzymatic activity even in the presence of saturating Mg(2+) concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg(2+) and Zn(2+) are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg(2+) conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn(2+) at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [Zn(2+)L(2)(-1)L(2)(0) (H(2)O)(2)] complex.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Pseudomonas aeruginosa/enzimologia , Zinco/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Hidrolases/genética , Hidrolases/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilcolina/metabolismo , Zinco/metabolismo
8.
Protein Expr Purif ; 71(2): 153-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20064618

RESUMO

Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.


Assuntos
Fenômenos Biofísicos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Pseudomonas aeruginosa/enzimologia , Catálise , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/química , Corpos de Inclusão/enzimologia , Corpos de Inclusão/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina/análise , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
9.
Biochim Biophys Acta ; 1784(12): 2038-44, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801468

RESUMO

Phosphorylcholine phosphatase (PchP) of Pseudomonas aeruginosa, a product of the PA5292 gene, catalyzes the hydrolysis of phosphocholine to choline and inorganic phosphate (Pi). Phosphocholine is produced after hemolytic phospholipase C (PlcH) acts upon phosphatidylcholine or sphingomyelin. Therefore, PlcH and PchP are involved in the pathogenesis of P. aeruginosa. PchP belongs to the HAD superfamily as it contains three conserved sequences motifs. In mature PchP, the motifs I, II, and III are (31)DMDNT(35), (166)S, and (261)GDTPDSD(267), respectively. Kinetic characterization of wild-type and mutated proteins, obtained by site-directed mutagenesis, in addition to a molecular model of PchP helped us to understand the contribution of key residues in the conserved motifs I, II and III that are involved in the catalysis of p-nitrophenylphosphate processing after the addition of Mg(2+), Zn(2+) or Cu(2+) (these are activators of PchP activity). Our results are explained by invoking the concept of chemical hardness and softness introduced by Pearson in 1963 and its extension that "hard acids prefer to coordinate to hard bases and soft acids to soft bases" [Parr and Pearson, J. Am. Chem. Soc., 105, 7512-7516 (1983)].


Assuntos
Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Pseudomonas aeruginosa/enzimologia , Motivos de Aminoácidos/genética , Catálise , Domínio Catalítico/genética , Hidrólise , Metais/química , Metais/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/química , Fosforilcolina/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
10.
Curr Microbiol ; 55(6): 530-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17899264

RESUMO

Pseudomonas aeruginosa expresses hemolytic phospholipase C (PlcH) with choline or under phosphate-limiting conditions. PlcH from these conditions were differently eluted from the Celite-545 column after application of an ammonium sulfate linear reverse gradient. The PlcH from supernatants of bacteria grown in the presence of choline was eluted with 30% ammonium sulfate and was more than 85% inhibited by tetradecyltrimethylammonium. PlcH from supernatants of bacteria grown with succinate and ammonium ions in a low-phosphate medium was eluted as a peak with 10% of salt and was less than 10% inhibited by tetradecyltrimethylammonium. PlcH from low phosphate was purified associated with a protein of 17 kDa. This complex was dissociated and separated on a Sephacryl S-200 column with 1% (w/v) sodium dodecyl sulfate. After this dissociation, the resulting protein of 70 kDa, corresponding to PlcH, was inhibited by tetradecyltrimethylammonium, showing a protection effect of the accompanying protein. RT-PCR analyses showed that in choline media, the plcH gene was expressed independently of plcR. In low-phosphate medium, the plcH gene was expressed as a plcHR operon. Because plcR encodes for chaperone proteins, this result correlates with the observation that PlcH from supernatants of bacteria grown in the presence of choline was purified without an accompanying protein. The consequence of the absence of this chaperone was that tetradecyltrimethylammonium inhibited the PlcH activity.


Assuntos
Colina/farmacologia , Pseudomonas aeruginosa/enzimologia , Tensoativos/farmacologia , Compostos de Trimetil Amônio/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Proteínas de Bactérias , Meios de Cultura , Indução Enzimática , Regulação Bacteriana da Expressão Gênica , Hemólise , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
11.
Curr Microbiol ; 53(6): 534-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106798

RESUMO

Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP), the product of the PA5292 gene, is synthesized when the bacteria are grown with choline, betaine, dimethylglycine, or carnitine. In the presence of Mg(2+), PChP catalyzes the hydrolysis of both phosphorylcholine (PCh) and p-nitrophenylphosphate (p-NPP). PCh saturation curve analysis of the enzyme with or without the signal peptide indicated that the peptide was the fundamental factor responsible for decreasing the affinity of the second site of PChP for PCh, either at pH 5.0 or pH 7.4. PChP contained three conserved motifs characteristic of the haloacid dehalogenases superfamily. In the PChP without the signal peptide, motifs I, II, and III correspond to the residues (31)DMDNT(35), (166)SAA(168), and K(242)/(261)GDTPDSD(267), respectively. To determine the catalytic importance of the D31, D33, T35, S166, K242, D262, D265, and D267 on the enzyme activity, site-directed mutagenesis was performed. D31, D33, D262, and D267 were identified as the more important residues for catalysis. D265 and D267 may be involved in the stabilization of motif III, or might contribute to substrate specificity. The substitution of T35 by S35 resulted in an enzyme with a low PChP activity, but conserves the catalytic sites involved in the hydrolysis of PCh (K(m1) 0.03 mM: , K(m2) 0.5 mM: ) or p-NPP (K(m) 2.1 mM: ). Mutating either S166 or K242 revealed that these residues are also important to catalyze the hydrolysis of both substrates. The substitution of lysine by arginine or by glutamine revealed the importance of the positive charged group, either from the amino or guanidinium groups, because K242Q was inactive, whereas K242R was a functional enzyme.


Assuntos
Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Pseudomonas aeruginosa/enzimologia , Substituição de Aminoácidos , Sítios de Ligação , Cinética , Mutagênese Sítio-Dirigida , Sinais Direcionadores de Proteínas , Pseudomonas aeruginosa/genética
12.
Curr Microbiol ; 50(5): 251-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15886911

RESUMO

Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.


Assuntos
Monoéster Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Pseudomonas aeruginosa/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Dados de Sequência Molecular , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/metabolismo , Plasmídeos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade
13.
J Bacteriol ; 184(15): 4301-3, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12107149

RESUMO

The gene for glycine betaine transmethylase (gbt) was identified in Pseudomonas aeruginosa strain Fildes III by biochemical, physiological, and molecular approaches. Based on sequence analysis, the knockout gene corresponded to an open reading frame (ORF) named PA3082 in the genome of P. aeruginosa PAO1. The translated product of this ORF displayed similarity to transferases of different microorganisms. Mutation in gbt blocked the utilization of choline and glycine betaine as carbon and nitrogen sources.


Assuntos
Betaína/metabolismo , Colina/metabolismo , Metiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Metiltransferases/genética , Mutação , Fases de Leitura Aberta , Pseudomonas aeruginosa/genética , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA