Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Hum Genet ; 142(3): 321-330, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629921

RESUMO

Chatbots, web-based artificial intelligence tools that simulate human conversation, are increasingly in use to support many areas of genomic medicine. However, patient preferences towards using chatbots across the range of clinical settings are unknown. We conducted a qualitative study with individuals who underwent genetic testing for themselves or their child. Participants were asked about their preferences for using a chatbot within the genetic testing journey. Thematic analysis employing interpretive description was used. We interviewed 30 participants (67% female, 50% 50 + years). Participants considered chatbots to be inefficient for very simple tasks (e.g., answering FAQs) or very complex tasks (e.g., explaining results). Chatbots were acceptable for moderately complex tasks where participants perceived a favorable return on their investment of time and energy. In addition to achieving this "sweet spot," participants anticipated that their comfort with chatbots would increase if the chatbot was used as a complement to but not a replacement for usual care. Participants wanted a "safety net" (i.e., access to a clinician) for needs not addressed by the chatbot. This study provides timely insights into patients' comfort with and perceived limitations of chatbots for genomic medicine and can inform their implementation in practice.


Assuntos
Inteligência Artificial , Serviços em Genética , Criança , Humanos , Feminino , Masculino , Testes Genéticos , Preferência do Paciente , Software
2.
Hum Genet ; 142(2): 201-216, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36376761

RESUMO

Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visualization Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population frequency, inheritance pattern, and clinical relevance) on a single page-supported by modules providing variant filtration and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous curations. SCIP was efficient in filtration and prioritization: a median of just two CNVs per case were selected for review, yet it captured all P/LP findings (92.5% of which ranked 1st). SCIP was also able to identify one pathogenic CNV previously missed. SCIP was benchmarked against AnnotSV and a spreadsheet-based manual workflow and performed superiorly than both. In conclusion, SCIP is a novel software package for efficient clinical CNV interpretation, substantially faster and more accurate than previous tools (available at https://github.com/qd29/SCIP , a video tutorial series is available at https://bit.ly/SCIPVideos ).


Assuntos
Transtorno do Espectro Autista , Variações do Número de Cópias de DNA , Humanos , Sequenciamento Completo do Genoma , Software , Doenças Raras
4.
Genet Med ; 24(5): 1027-1036, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219592

RESUMO

PURPOSE: Genome sequencing (GS) can aid clinical management of multiple pediatric conditions. Insurers require accurate cost information to inform funding and implementation decisions. The objective was to compare the laboratory workflows and microcosts of trio GS testing in children with developmental delay (DD) and in children with cardiac conditions. METHODS: Cost items related to each step in trio GS (child and 2 parents) for both populations were identified and measured. Program costs over 5 years were estimated. Probabilistic and deterministic analyses were conducted. RESULTS: The mean cost per trio GS was CAD$6634.11 (95% CI = 6352.29-6913.40) for DD and CAD$8053.10 (95% CI = 7699.30-8558.10) for cardiac conditions. The 5-year program cost was CAD$28.11 million (95% CI = 26.91-29.29) for DD and CAD$5.63 million (95% CI = 5.38-5.98) for cardiac conditions. Supplies constituted the largest cost component for both populations. The higher cost per sample for the population with cardiac conditions was due to the inclusion of pharmacogenomics, higher bioinformatics labor costs, and a more labor intensive case review. CONCLUSION: This analysis indicated important variation in trio GS workflow and costs between pediatric populations in a single institution. Enhanced understanding of the clinical utility and costs of GS can inform harmonization and implementation decision-making.


Assuntos
Pais , Farmacogenética , Sequência de Bases , Criança , Mapeamento Cromossômico , Humanos
5.
Genet Med ; 24(2): 430-438, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906486

RESUMO

PURPOSE: Demonstrating the clinical utility of genetic testing is fundamental to clinical adoption and reimbursement, but standardized definitions and measurement strategies for this construct do not exist. The Clinician-reported Genetic testing Utility InDEx (C-GUIDE) offers a novel measure to fill this gap. This study assessed its validity and inter-rater reliability. METHODS: Genetics professionals completed C-GUIDE after disclosure of test results to patients. Construct validity was assessed using regression analysis to measure associations between C-GUIDE and global item scores as well as potentially explanatory variables. Inter-rater reliability was assessed by administering a vignette-based survey to genetics professionals and calculating Krippendorff's α. RESULTS: On average, a 1-point increase in the global item score was associated with an increase of 3.0 in the C-GUIDE score (P < .001). Compared with diagnostic results, partially/potentially diagnostic and nondiagnostic results were associated with a reduction in C-GUIDE score of 9.5 (P < .001) and 10.2 (P < .001), respectively. Across 19 vignettes, Krippendorff's α was 0.68 (95% CI: 0.63-0.72). CONCLUSION: C-GUIDE showed acceptable validity and inter-rater reliability. Although further evaluation is required, C-GUIDE version 1.2 can be useful as a standardized approach to assess the clinical utility of genetic testing.


Assuntos
Testes Genéticos , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
6.
JAMA Netw Open ; 4(5): e2110446, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34037732

RESUMO

Importance: Pharmacogenomic (PGx) testing provides preemptive pharmacotherapeutic guidance regarding the lack of therapeutic benefit or adverse drug reactions of PGx targeted drugs. Pharmacogenomic information is of particular value among children with complex medical conditions who receive multiple medications and are at higher risk of developing adverse drug reactions. Objectives: To assess the implementation outcomes of a PGx testing program comprising both a point-of-care model that examined targeted drugs and a preemptive model informed by whole-genome sequencing that evaluated a broad range of drugs for potential therapy among children in a pediatric tertiary care setting. Design, Setting, and Participants: This cohort study was conducted at The Hospital for Sick Children in Toronto, Ontario, from January 2017 to September 2020. Pharmacogenomic analyses were performed among 172 children who were categorized into 2 groups: a point-of-care cohort and a preemptive cohort. The point-of-care cohort comprised 57 patients referred to the consultation clinic for planned therapy with PGx targeted drugs and/or for adverse drug reactions, including lack of therapeutic benefit, after the receipt of current or past medications. The preemptive cohort comprised 115 patients who received exploratory whole-genome sequencing-guided PGx testing for their heart conditions from the cardiac genome clinic at the Ted Rogers Centre for Heart Research. Exposures: Patients received PGx analysis of whole-genome sequencing data and/or multiplex genotyping of 6 pharmacogenes (CYP2C19, CYP2C9, CYP2D6, CYP3A5, VKORC1, and TPMT) that have established PGx clinical guidelines. Main Outcomes and Measures: The number of patients for whom PGx test results warranted deviation from standard dosing regimens. Results: A total of 172 children (mean [SD] age, 8.5 [5.6] years; 108 boys [62.8%]) were enrolled in the study. In the point-of-care cohort, a median of 2 target genes (range, 1-5 genes) were investigated per individual, with CYP2C19 being the most frequently examined; genotypes in 21 of 57 children (36.8%) were incompatible with standard treatment regimens. As expected from population allelic frequencies, among the 115 children in the whole-genome sequencing-guided preemptive cohort, 92 children (80.0%) were recommended to receive nonstandard treatment regimens for potential drug therapies based on their 6-gene pharmacogenetic profile. Conclusions and Relevance: In this cohort study, among both the point-of-care and preemptive cohorts, the multiplex PGx testing program provided dosing recommendations that deviated from standard regimens at an overall rate that was similar to the population frequencies of relevant variants.


Assuntos
Testes Genéticos/estatística & dados numéricos , Pediatria/estatística & dados numéricos , Testes Farmacogenômicos/estatística & dados numéricos , Testes Imediatos/estatística & dados numéricos , Medicina de Precisão/métodos , Medicina de Precisão/estatística & dados numéricos , Atenção Terciária à Saúde/estatística & dados numéricos , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Ontário , Projetos Piloto
7.
Front Genet ; 11: 957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110418

RESUMO

Recent genome-wide studies of rare genetic variants have begun to implicate novel mechanisms for tetralogy of Fallot (TOF), a severe congenital heart defect (CHD). To provide statistical support for case-only data without parental genomes, we re-analyzed genome sequences of 231 individuals with TOF (n = 175) or related CHD. We adapted a burden test originally developed for de novo variants to assess ultra-rare variant burden in individual genes, and in gene-sets corresponding to functional pathways and mouse phenotypes, accounting for highly correlated gene-sets and for multiple testing. For truncating variants, the gene burden test confirmed significant burden in FLT4 (Bonferroni corrected p-value < 0.01). For missense variants, burden in NOTCH1 achieved genome-wide significance only when restricted to constrained genes (i.e., under negative selection, Bonferroni corrected p-value = 0.004), and showed enrichment for variants affecting the extracellular domain, especially those disrupting cysteine residues forming disulfide bonds (OR = 39.8 vs. gnomAD). Individuals with NOTCH1 ultra-rare missense variants, all with TOF, were enriched for positive family history of CHD. Other genes not previously implicated in CHD had more modest statistical support in gene burden tests. Gene-set burden tests for truncating variants identified a cluster of pathways corresponding to VEGF signaling (FDR = 0%), and of mouse phenotypes corresponding to abnormal vasculature (FDR = 0.8%); these suggested additional candidate genes not previously identified (e.g., WNT5A and ZFAND5). Results for the most promising genes were driven by the TOF subset of the cohort. The findings support the importance of ultra-rare variants disrupting genes involved in VEGF and NOTCH signaling in the genetic architecture of TOF, accounting for 11-14% of individuals in the TOF cohort. These proof-of-principle data indicate that this statistical methodology could assist in analyzing case-only sequencing data in which ultra-rare variants, whether de novo or inherited, contribute to the genetic etiopathogenesis of a complex disorder.

8.
Am J Med Genet A ; 182(9): 2145-2151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652832

RESUMO

Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by loss or deficient expression of UBE3A on the maternally inherited allele. In 10-15% of individuals with a clinical diagnosis of AS, a molecular diagnosis cannot be established with conventional testing. We describe a 13-year-old male with an atypical presentation of AS, who was found to have a novel, maternally inherited, intronic variant in UBE3A (c.3-12T>A) using genome sequencing (GS). Targeted sequencing of RNA isolated from blood confirmed the creation of a new acceptor splice site. These GS results ended a six-year diagnostic odyssey and revealed a 50% recurrence risk for the unaffected parents. This case illustrates a previously unreported splicing variant causing AS. Intronic variants identifiable by GS may account for a proportion of individuals who are suspected of having well-known genetic disorders despite negative prior genetic testing.


Assuntos
Síndrome de Angelman/genética , Predisposição Genética para Doença , Íntrons/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Alelos , Síndrome de Angelman/patologia , Criança , Mapeamento Cromossômico , Variação Genética/genética , Humanos , Masculino , Mutação/genética , Sítios de Splice de RNA/genética , Sequenciamento Completo do Genoma/métodos
9.
Genet Med ; 22(6): 1015-1024, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32037394

RESUMO

PURPOSE: This study investigated the diagnostic utility of nontargeted genomic testing in patients with pediatric heart disease. METHODS: We analyzed genome sequencing data of 111 families with cardiac lesions for rare, disease-associated variation. RESULTS: In 14 families (12.6%), we identified causative variants: seven were de novo (ANKRD11, KMT2D, NR2F2, POGZ, PTPN11, PURA, SALL1) and six were inherited from parents with no or subclinical heart phenotypes (FLT4, DNAH9, MYH11, NEXMIF, NIPBL, PTPN11). Outcome of the testing was associated with the presence of extracardiac features (p = 0.02), but not a positive family history for cardiac lesions (p = 0.67). We also report novel plausible gene-disease associations for tetralogy of Fallot/pulmonary stenosis (CDC42BPA, FGD5), hypoplastic left or right heart (SMARCC1, TLN2, TRPM4, VASP), congenitally corrected transposition of the great arteries (UBXN10), and early-onset cardiomyopathy (TPCN1). The identified candidate genes have critical functions in heart development, such as angiogenesis, mechanotransduction, regulation of heart size, chromatin remodeling, or ciliogenesis. CONCLUSION: This data set demonstrates the diagnostic and scientific value of genome sequencing in pediatric heart disease, anticipating its role as a first-tier diagnostic test. The genetic heterogeneity will necessitate large-scale genomic initiatives for delineating novel gene-disease associations.


Assuntos
Cardiopatias/genética , Criança , Mapeamento Cromossômico , Exoma , Humanos , Mecanotransdução Celular , Transposição dos Grandes Vasos
10.
BMC Med Genomics ; 12(1): 173, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775751

RESUMO

BACKGROUND: Assess process, uptake, validity and resource needs for return of actionable research findings to biobank participants. METHODS: Participants were prospectively enrolled in a multicenter biorepository of childhood onset heart disease. Clinically actionable research findings were reviewed by a Return of Research Results Committee (RRR) and returned to the physician or disclosed directly to the participant through a research genetic counselor. Action taken following receipt of this information was reviewed. RESULTS: Genetic data was generated in 1963 of 7408 participants. Fifty-nine new findings were presented to the RRR committee; 20 (34%) were deemed reportable. Twelve were returned to the physician, of which 7 were disclosed to participants (median time to disclosure, 192 days). Seven findings were returned to the research genetic counselor; all have been disclosed (median time to disclosure, 19 days). Twelve families (86%) opted for referral to clinical genetics after disclosure of findings; 7 results have been validated, 5 results are pending. Average cost of return and disclosure per reportable finding incurred by the research program was $750 when utilizing a research genetic counselor; clinical costs associated with return were not included. CONCLUSIONS: Return of actionable research findings was faster if disclosed directly to the participant by a research genetic counselor. There was a high acceptability amongst participants for receiving the findings, for referral to clinical genetics, and for clinical validation of research findings, with all referred cases being clinically confirmed.


Assuntos
Bases de Dados Factuais , Genômica/métodos , Pediatria , Custos e Análise de Custo , Humanos
11.
Genet Med ; 21(4): 1001-1007, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30232381

RESUMO

PURPOSE: To determine disease-associated single-gene variants in conotruncal defects, particularly tetralogy of Fallot (TOF). METHODS: We analyzed for rare loss-of-function and deleterious variants in FLT4 (VEGFR3) and other genes in the vascular endothelial growth factor (VEGF) pathway, as part of a genome sequencing study involving 175 adults with TOF from a single site. RESULTS: We identified nine (5.1%) probands with novel FLT4 variants: seven loss-of-function, including an 8-kb deletion, and two predicted damaging. In ten other probands we found likely disruptive variants in VEGF-related genes: KDR (VEGFR2; two stopgain and two nonsynonymous variants), VEGFA, FGD5, BCAR1, IQGAP1, FOXO1, and PRDM1. Detection of VEGF-related variants (19/175, 10.9%) was associated with an increased prevalence of absent pulmonary valve (26.3% vs. 3.4%, p < 0.0001) and right aortic arch (52.6% vs. 29.1%, p = 0.029). Extracardiac anomalies were rare. In an attempt to replicate findings, we identified three loss-of-function or damaging variants in FLT4, KDR, and IQGAP1 in ten independent families with TOF. CONCLUSION: Loss-of-function variants in FLT4 and KDR contribute substantially to the genetic basis of TOF. The findings support dysregulated VEGF signaling as a novel mechanism contributing to the pathogenesis of TOF.


Assuntos
Predisposição Genética para Doença , Tetralogia de Fallot/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Feminino , Estudos de Associação Genética , Haploinsuficiência/genética , Humanos , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Tetralogia de Fallot/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Sequenciamento Completo do Genoma
12.
Circulation ; 138(12): 1195-1205, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29959160

RESUMO

BACKGROUND: Implicit in the genetic evaluation of patients with suspected genetic diseases is the assumption that the genes evaluated are causative for the disease based on robust scientific and statistical evidence. However, in the past 20 years, considerable variability has existed in the study design and quality of evidence supporting reported gene-disease associations, raising concerns of the validity of many published disease-causing genes. Brugada syndrome (BrS) is an arrhythmia syndrome with a risk of sudden death. More than 20 genes have been reported to cause BrS and are assessed routinely on genetic testing panels in the absence of a systematic, evidence-based evaluation of the evidence supporting the causality of these genes. METHODS: We evaluated the clinical validity of genes tested by diagnostic laboratories for BrS by assembling 3 gene curation teams. Using an evidence-based semiquantitative scoring system of genetic and experimental evidence for gene-disease associations, curation teams independently classified genes as demonstrating limited, moderate, strong, or definitive evidence for disease causation in BrS. The classification of curator teams was reviewed by a clinical domain expert panel that could modify the classifications based on their independent review and consensus. RESULTS: Of 21 genes curated for clinical validity, biocurators classified only 1 gene ( SCN5A) as definitive evidence, whereas all other genes were classified as limited evidence. After comprehensive review by the clinical domain Expert panel, all 20 genes classified as limited evidence were reclassified as disputed with regard to any assertions of disease causality for BrS. CONCLUSIONS: Our results contest the clinical validity of all but 1 gene clinically tested and reported to be associated with BrS. These findings warrant a systematic, evidence-based evaluation for reported gene-disease associations before use in patient care.


Assuntos
Síndrome de Brugada/genética , Análise Mutacional de DNA , Morte Súbita Cardíaca/etiologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Síndrome de Brugada/complicações , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/mortalidade , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Variações Dependentes do Observador , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
13.
Am J Hum Genet ; 100(2): 343-351, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132692

RESUMO

Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1.


Assuntos
Catarata/genética , Variação Genética , Deficiência Intelectual/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Espasmos Infantis/genética , Alelos , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Catarata/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Espasmos Infantis/diagnóstico por imagem
14.
Genet Med ; 18(11): 1075-1084, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27171546

RESUMO

The introduction of diagnostic clinical genome and exome sequencing (CGES) is changing the scope of practice for clinical geneticists. Many large institutions are making a significant investment in infrastructure and technology, allowing clinicians to access CGES, especially as health-care coverage begins to extend to clinically indicated genomic sequencing-based tests. Translating and realizing the comprehensive clinical benefits of genomic medicine remain a key challenge for the current and future care of patients. With the increasing application of CGES, it is necessary for geneticists and other health-care providers to understand its benefits and limitations in order to interpret the clinical relevance of genomic variants identified in the context of health and disease. New, collaborative working relationships with specialists across diverse disciplines (e.g., clinicians, laboratorians, bioinformaticians) will undoubtedly be key attributes of the future practice of clinical genetics and may serve as an example for other specialties in medicine. These new skills and relationships will also inform the development of the future model of clinical genetics training curricula. To address the evolving role of the clinical geneticist in the rapidly changing climate of genomic medicine, two Clinical Genetics Think Tank meetings were held that brought together physicians, laboratorians, scientists, genetic counselors, trainees, and patients with experience in clinical genetics, genetic diagnostics, and genetics education. This article provides recommendations that will guide the integration of genomics into clinical practice.Genet Med 18 11, 1075-1084.


Assuntos
Aconselhamento Genético/tendências , Genética Médica/tendências , Genoma Humano/genética , Genômica , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
15.
NPJ Genom Med ; 12016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28567303

RESUMO

The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA