RESUMO
Neurofibromatosis type 1 (NF1) is a complex genetic disorder that affects a range of tissues including muscle and bone. Recent preclinical and clinical studies have shown that Nf1 deficiency in muscle causes metabolic changes resulting in intramyocellular lipid accumulation and muscle weakness. These can be subsequently rescued by dietary interventions aimed at modulating lipid availability and metabolism. It was speculated that the modified diet may rescue defects in cortical bone as NF1 deficiency has been reported to affect genes involved with lipid metabolism. Bone specimens were analyzed from wild type control mice as well as Nf1Prx1-/- (limb-targeted Nf1 knockout mice) fed standard chow versus a range of modified chows hypothesized to influence lipid metabolism. Mice were fed from 4 weeks to 12 weeks of age. MicroCT analysis was performed on the cortical bone to examine standard parameters (bone volume, tissue mineral density, cortical thickness) and specific porosity measures (closed pores corresponding to osteocyte lacunae, and larger open pores). Nf1Prx1-/- bones were found to have inferior bone properties to wild type bones, with a 4-fold increase in the porosity attributed to open pores. These measures were rescued by dietary interventions including a L-carnitine + medium-chain fatty acid supplemented chow previously shown to improve muscle histology function. Histological staining visualized these changes in bone porosity. These data support the concept that lipid metabolism may have a mechanistic impact on bone porosity and quality in NF1.
Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Neurofibromatose 1 , Animais , Neurofibromatose 1/dietoterapia , Neurofibromatose 1/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/genética , Camundongos , Fenótipo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Porosidade , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Metabolismo dos Lipídeos , Microtomografia por Raio-X , Masculino , Densidade Óssea , DietaRESUMO
Introduction: Osteomyelitis remains a major clinical challenge. Many published rodent fracture infection models are costly compared with murine models for rapid screening and proof-of-concept studies. We aimed to develop a dependable and cost-effective murine bone infection model that mimics bacterial bone infections associated with biofilm and metal implants. Methods: Tibial drilled hole (TDH) and needle insertion surgery (NIS) infection models were compared in C57BL/6 mice (female, N = 150 ). Metal pins were inserted selectively into the medullary canal adjacent to the defect sites on the metaphysis. Free Staphylococcus aureus (ATCC 12600) or biofilm suspension (ATCC 25923) was locally inoculated. Animals were monitored for physiological or radiographic evidence of infection without prophylactic antibiotics for up to 14â¯d. At the end point, bone swabs, soft-tissue biopsies, and metal pins were taken for cultures. X-ray and micro-CT scans were performed along with histology analysis. Results: TDH and NIS both achieved a 100â¯% infection rate in tibiae when a metal implant was present with injection of free bacteria. In the absence of an implant, inoculation with a bacterial biofilm still induced a 40â¯%-50â¯% infection rate. In contrast, freely suspended bacteria and no implant consistently showed lower or negligible infection rates. Micro-CT analysis confirmed that biofilm infection caused local bone loss even without a metal implant as a nidus. Although a metal surface permissive for biofilm formation is impermeable to create progressive bone infections in animal models, the metal implant can be dismissed if a bacterial biofilm is used. Conclusion: These models have a high potential utility for modeling surgery-related osteomyelitis, with NIS being simpler to perform than TDH.
RESUMO
BACKGROUND: The globally acknowledged treatment for mild to moderate slipped capital femoral epiphysis (SCFE) is single screw in situ fixation, also used for prophylactic contralateral fixation. The Free-Gliding Screw (FG; Pega Medical) is a 2-part free-extending screw system designed to allow the growth of the proximal femur. We aimed to analyze the relationship between skeletal maturity and potential growth of the proximal physis and remodeling of the femoral neck using this implant. MATERIALS AND METHODS: Females below 12 years and males below 14 years undergoing in situ fixation for stable SCFE or prophylactic fixation were treated using the implant. Three elements of the modified Oxford Bone (mOB 3 ) score were used to measure maturity (triradiate cartilage, head of the femur, and greater trochanter). Radiographs were analyzed immediately postoperatively and at a minimum of 2 years for a change in screw length, posterior-sloping angle, articulotrochanteric distance, α angle, and head-neck offset. RESULTS: The study group comprised 30 (F:M=12:18) of 39 hips treated with SCFE and 22 (F:M=13:9) of 29 hips managed prophylactically using the free-Gliding screw. In the therapeutic group, chronologic age was a less valuable predictor of future screw lengthening than mOB 3 . An mOB 3 of ≤13 predicted future growth of >6 mm but did not reach statistical significance ( P =0.07). Patients with open triradiates showed a mean screw lengthening of 6.6 mm compared with those with closed triradiates (4.0 mm), but this did not reach significance ( P =0.12). In those with mOB 3 ≤13, the α angle reduced significantly ( P <0.01) and the head-neck offset increased significantly, suggesting remodeling. There was no change in these parameters when mOB 3 ≥14. In the prophylactic group, change in screw length was significant with mOB 3 of ≤13 (mean=8.0 mm, P <0.05), as was the presence of an open triradiate cartilage (mean=7.7 mm, P <0.05). In both cohorts, posterior-sloping angle and articulotrochanteric distance did not change, indicating no slip progression in either treatment or prophylactic groups and minimal effect on the proximal physeal growth relative to the greater trochanter. CONCLUSIONS: Growing screw constructs can halt slip progression while allowing proximal femoral growth in young patients with SCFE. Ongoing growth is better when the implant is used for prophylactic fixation. The results in treated SCFE need to be expanded to demonstrate a clinically meaningful cut-off for significant growth, but SCFE patients with an open triradiate remodel significantly more than those where it is closed. LEVEL OF EVIDENCE: Level III-retrospective comparative study.
Assuntos
Escorregamento das Epífises Proximais do Fêmur , Masculino , Feminino , Humanos , Escorregamento das Epífises Proximais do Fêmur/diagnóstico por imagem , Escorregamento das Epífises Proximais do Fêmur/cirurgia , Estudos Retrospectivos , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/cirurgia , Lâmina de CrescimentoRESUMO
Osteogenesis imperfecta (OI) is a genetic bone fragility disorder that features frequent fractures. Bone healing outcomes are contingent on a proper balance between bone formation and resorption, and drugs such as bone morphogenetic proteins (BMPs) and bisphosphonates (BPs) have shown to have utility in modulating fracture repair. While BPs are used for OI to increase BMD and reduce pain and fracture rates, there is little evidence for using BMPs as local agents for fracture healing (alone or with BPs). In this study, we examined wild-type and OI mice (Col1a2+/G610C ) in a murine tibial open fracture model with (i) surgery only/no treatment, (ii) local BMP-2 (10 µg), or (iii) local BMP-2 and postoperative zoledronic acid (ZA; 0.1 mg/kg total dose). Microcomputed tomography reconstructions of healing fractures indicated BMP-2 was less effective in an OI setting, however, BMP-2 +ZA led to considerable increases in bone volume (+193% WT, p < 0.001; +154% OI, p < 0.001) and polar moment of inertia (+125% WT, p < 0.01; +248% OI, p < 0.05). Tissue histology revealed a thinning of the neocortex of the callus in BMP-2 treated OI bone, but considerable retention of woven bone in the healing callus with BMP + ZA specimens. These data suggest a cautious approach may be warranted with the sole application of BMP-2 in an OI surgical setting as a bone graft substitute. However, this may be overcome by off-label BP administration.
Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Camundongos , Animais , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Consolidação da Fratura , Microtomografia por Raio-X , Densidade Óssea , Difosfonatos/farmacologia , Calo Ósseo/patologia , Proteínas Morfogenéticas Ósseas/uso terapêuticoRESUMO
Multiple myeloma is a hematological malignancy affecting the plasma cells. It is the second most common hematologic cancer in adults. Over 90% of patients develop local osteolytic lesions and skeletal-related events at some point during the progression of the disease. Bone lesions can induce severe pain and immobility and can also increase the risk of fractures and osteomyelitis. Skeletal complications are associated with poor clinical outcomes, affecting quality of life and mortality. Current standards of care for myeloma, e.g., autologous stem-cell transplantation (ASCT) and chemotherapy, do not lessen the risk of adverse events in bone. Once bone lesions are present, bone-targeted interventions are limited, with bone antiresorptive drugs being a mainstay of treatment. This review highlights the growing literature surrounding osteolytic lesions and bone infections associated with multiple myeloma and assesses current and emerging treatments. Emerging evidence from clinical trials suggests that denosumab can reduce skeletal-related events, and the potential application of bortezomib/1D11 can reduce bone destruction and pathological fractures in MM patients. Once established, bone lesions are prone to develop osteomyelitis - especially in immunocompromised individuals. Antibiotics and surgical interventions have been used to manage bone infections in most reported cases. As the bone infection risk associated with MM bone lesions become more evident, there is scope to improve patient management by mitigating this risk with prophylactic antimicrobial therapy.
RESUMO
BACKGROUND: Children with the most common inherited neuropathy, Charcot-Marie-Tooth disease (CMT), are often prescribed ankle-foot orthoses (AFOs) to improve walking ability and prevent falls by reducing foot drop, postural instability, and other gait impairments. These externally worn assistive devices are traditionally custom-made using thermoplastic vacuum forming. This labour-intensive manufacturing process often results in AFOs which are cumbersome due to limited design options, and are associated with low acceptability, discomfort, and suboptimal impact on gait. The aim of this study was to determine how 3D printing can be used to replicate and redesign AFOs in children with CMT. METHODS: Traditional AFOs, 3D printed replica AFOs (same design as traditional AFOs), 3D printed redesigned AFOs and a shoes only control condition were compared in 12 children with CMT. 3D printed AFOs were manufactured using material extrusion in Nylon-12. 3D gait analysis (temporal-spatial, kinematic, kinetic), in-shoe pedobarography and self-reported satisfaction were used to compare conditions. The primary kinematic and kinetic outcome measures were maximum ankle dorsiflexion in swing and maximum ankle dorsiflexor moment in loading response, to capture foot drop and an absent of heel rocker. RESULTS: The 3D printed replica AFOs were comparable to traditional AFOs for all outcomes. The 3D printed replica AFOs improved foot position at initial contact and during loading response and significantly reduced pressure beneath the whole foot, rearfoot and forefoot compared to the shoes only. The 3D printed redesigned AFOs produced a device that was significantly lighter (mean -35.2, SD 13.3%), and normalised maximum ankle dorsiflexor moment in loading response compared to shoes only and traditional AFOs. SIGNIFICANCE: 3D printing can be used to replicate traditional handmade AFOs and to redesign AFOs to produce a lighter device with improved biomechanics by incorporating novel design features.
Assuntos
Doença de Charcot-Marie-Tooth , Órtoses do Pé , Neuropatias Fibulares , Tornozelo , Fenômenos Biomecânicos , Criança , Marcha/fisiologia , Humanos , Impressão TridimensionalRESUMO
INTRODUCTION: Osteogenesis imperfecta (OI) or brittle bone disease is a genetic disorder that results in bone fragility. Bisphosphonates such as zoledronic acid (ZA) are used clinically to increase bone mass and reduce fracture risk. Human growth hormone (hGH) has been used to promote long bone growth and forestall short stature in children with OI. The potential for hGH to improve bone quality, particularly in combination with ZA has not been robustly studied. METHODS: A preclinical study was performed using n = 80 mice split evenly by genotype (WT, Col1a2+/G610C). Groups of n = 10 were treated with +/-ZA and +/-hGH in a factorial design for each genotype. Outcome measures included bone length, isolated muscle mass, bone parameters assessed by microCT analysis, dynamic histomorphometry, and biomechanical testing. RESULTS: Treatment with hGH alone led to an increase in femur length in WT but not OI mice, however bone length was increased in both genotypes with the combination of hGH/ZA. MicroCT showed that hGH/ZA treatment increased cortical BV in both WT (+15%) and OI mice (+14.3%); hGH/ZA were also found to be synergistic in promoting cortical thickness in OI bone. ZA was found to have a considerably greater positive impact on trabecular bone than hGH. ZA was found to suppress bone turnover, and this was rescued by hGH treatment in terms of cortical periosteal perimeter, but not by dynamic bone remodeling. Statistically significant improvements in long bone by microCT did not translate into improvements in mechanical strength in a 4-point bending test, nor did vertebral strength improve in L4 compression testing in WT/OI bone. DISCUSSION/CONCLUSION: These data support hGH/ZA combination as a treatment for short stature, however the improvements granted by hGH alone and in combination with ZA on bone quality are modest. Increased periosteal perimeter does show promise in improving bone strength in OI, however a longer treatment time may be required to see effects on bone strength through mechanical testing.
Assuntos
Hormônio do Crescimento Humano , Osteogênese Imperfeita , Animais , Densidade Óssea/fisiologia , Osso e Ossos , Modelos Animais de Doenças , Hormônio do Crescimento/uso terapêutico , Camundongos , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/uso terapêuticoRESUMO
PURPOSE: The modified Dunn procedure for slipped capital femoral epiphysis (SCFE) remains controversial. We reviewed our series over ten years to report our learning curve, experience with intraoperative monitoring of femoral head perfusion and its correlation with postoperative Single-photon emission computed tomography (SPECT-CT) bone scan and femoral head collapse in stable and unstable SCFE. METHODS: We retrospectively assessed 217 consecutive modified Dunn procedures performed between 2008 and 2018. In all, 178 had a minimum of one-year follow-up (mean 2.7 years (1 to 9.2)) including 107 stable and 71 unstable SCFE. Postoperative viability was assessed with a three-phase Tc99 bone scan and SPECT-CT. From 2011, femoral head perfusion monitoring was performed intraoperatively using a Codman Intracranial Pressure transducer and the capsulotomy was modified. RESULTS: With intraoperative monitoring, the rate of non-viable femoral heads in stable SCFE decreased from 21.1% to 0% (p < 0.001). In unstable SCFE, the rate remained unchanged from 35.7% to 29.8% (p = 0.669). The positive predictive value (PPV) of pulsatile monitoring for no collapse was 100% in stable and 89.1% in unstable SCFE. Pulsatile monitoring and viable SPECT-CT bone scan gave a 100% PPV for all cases. A non-viable scan defines those hips at risk of collapse since 100% of stable and 68.2% of unstable hips with non-viable bone scans went on to collapse. CONCLUSION: Our protocol enables safe performance of this complex procedure in stable SCFE with intraoperative monitoring being a reliable asset. The avascular necrosis rate for unstable SCFE remained unchanged and further research into its best management is required. LEVEL OF EVIDENCE: Level III.
RESUMO
Fracture repair is a normal physiological response to bone injury. During the process of bony callus formation, a lacunocanalicular network (LCN) is formed de novo that evolves with callus remodeling. Our aim was the longitudinal assessment of the development and evolution of the LCN during fracture repair. To this end, 45 adult wild-type C57BL/6 mice underwent closed tibial fracture surgery. Fractured and intact contralateral tibias were harvested after 2, 3, and 6 weeks of bone healing (n = 15/group). High-resolution micro-computed tomography (µCT) and deconvolution microscopy (DV) approaches were applied to quantify lacunar number density from the calluses and intact bone. On histological sections, Goldner's trichrome staining was used to assess lacunar occupancy, fluorescein isothiocyanate staining to visualize the canalicular network, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining to examine osteocyte apoptosis. Analysis of µCT scans showed progressive decreases in mean lacuna volume over time (-27% 2-3 weeks; -13% 3-6 weeks). Lacunar number density increased considerably between 2 and 3 weeks (+156%). Correlation analysis was performed, showing a positive linear relationship between canalicular number density and trabecular thickness (R 2 = 0.56, p < 0.001) and an inverse relationship between mean lacuna volume and trabecular thickness (R 2 = 0.57, p < 0.001). Histology showed increases in canalicular number density over time (+22% 2-3 weeks, +51% 3-6 weeks). Lacunar occupancy in new bone of the callus was high (>90%), but the old cortical bone within the fracture site appeared necrotic as it underwent resorption. In conclusion, our data shows a progressive increase in the complexity of the LCN over time during fracture healing and demonstrates that this network is initiated during the early stages of repair. Further studies are needed to address the functional importance of osteocytes in bone healing, particularly in detecting and translating the effects of micromotion in the fracture. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMO
Reduced muscle tone, muscle weakness, and physical fatigue can impact considerably on quality of life for children with neurofibromatosis type 1 (NF1). Human muscle biopsies and mouse models of NF1 deficiency in muscle show intramyocellular lipid accumulation, and preclinical data have indicated that L-carnitine supplementation can ameliorate this phenotype. The aim of this study is to examine whether daily L-carnitine supplementation is safe and feasible, and will improve muscle strength and reduce fatigue in children with NF1. A 12-week Phase 2a trial was conducted using 1000 mg daily oral levocarnitine tartrate supplementation. Recruited children were between 8 and 12 years old with a clinical diagnosis of NF1, history of muscle weakness and fatigue, and naïve to L-carnitine. Primary outcomes were safety (self-reporting, biochemical testing) and compliance. Secondary outcomes included plasma acylcarnitine profiles, functional measures (muscle strength, long jump, handwriting speed, 6-minute-walk test [6MWT]), and parent-reported questionnaires (PedsQL™, CBCL/6-18). Six children completed the trial with no self-reported adverse events. Biochemical tests for kidney and liver function were normal, and the average compliance was 95%. Plasma acylcarnitine levels were low, but within a range not clinically linked to carnitine deficiency. For strength measures, there was a mean 53% increase in dorsiflexion strength (95% confidence interval [CI] 8.89-60.75; p = 0.02) and mean 66% increase in plantarflexion strength (95% CI 12.99-134.1; p = 0.03). In terms of muscle performance, there was a mean 10% increase in long jump distance (95% CI 2.97-16.03; p = 0.01) and 6MWT distance (95% CI 5.88-75.45; p = 0.03). Comparison with the 1000 Norms Project data showed a significant improvement in Z-score for all of these measures. Parent reports showed no negative impact on quality of life, and the perceived benefits led to the majority of individuals remaining on L-carnitine after the study. Twelve weeks of L-carnitine supplementation is safe and feasible in children with NF1, and a Phase 3 trial should confirm the efficacy of treatment.
Assuntos
Carnitina/administração & dosagem , Fadiga/dietoterapia , Debilidade Muscular/dietoterapia , Neurofibromatose 1/dietoterapia , Cardiomiopatias/dietoterapia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Carnitina/efeitos adversos , Carnitina/deficiência , Carnitina/metabolismo , Criança , Suplementos Nutricionais/efeitos adversos , Fadiga/genética , Fadiga/patologia , Feminino , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Força Muscular/efeitos dos fármacos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Doenças Musculares/dietoterapia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Qualidade de VidaRESUMO
An ongoing challenge in the field of orthopedics is to produce a clinically relevant synthetic ceramic scaffold for the treatment of 'critical-sized' bone defects, which cannot heal without intervention. We had developed a bioactive ceramic (baghdadite, Ca3ZrSi2O9) and demonstrated its outstanding bioactivity using traditional manufacturing techniques. Here, we report on the development of a versatile stereolithography printing technology that enabled fabrication of anatomically-shaped and -sized Baghdadite scaffolds. We assessed the in vivo bioactivity of these scaffolds in co-delivering of bone morphogenetic protein-2 (BMP2) and zoledronic acid (ZA) through bioresorbable coatings to induce bone formation and increase retention in a rat model of heterotopic ossification. Micro-computed tomography, histology, mechanical tests pre- and post-implantation, and mechanical modelling were used to assess bone ingrowth and its effects on the mechanics of the scaffolds. Bone ingrowth and the consequent mechanical properties of the scaffolds improved with increasing BMP2 dose. Co-delivery of ZA with BMP2 further improved this outcome. The significant bone formation within the scaffolds functionalized with 10 µg BMP2 and 2 µg ZA made them 2.3 × stiffer and 2.7 × stronger post-implantation and turned these inherently brittle scaffolds into a tough and deformable material. The effects of bone ingrowth on the mechanical properties of scaffolds were captured in a mechanical model that can be used in future clinical studies for non-destructive evaluation of scaffold's stiffness and strength as new bone forms. These results support the practical utilization of our versatile stereolithographic printing methods and BMP2/ZA functionalization to create fit-for-purpose personalized implants for clinical trials. STATEMENT OF SIGNIFICANCE: In this study, we addressed a long-standing challenge of developing a ceramic printing technology that enables fabrication of customizable anatomically-shaped and -sized bioceramic scaffolds with precise internal architectures using an inexpensive desktop printer. We also addressed another challenge related to delivery of pharmaceuticals. BMP2, currently available as a bone-inducing bioactive protein, is clinically administered in a collagen scaffold that has limited moldability and poor mechanical properties. The comparably stiffer and stronger 3D printed personalized Baghdadite scaffolds developed here can be readily functionalized with bioresorbable coatings containing BMP2 ± ZA. These innovations considerably improve on the prior art and are scalable for use in human surgery.
Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Cerâmica/farmacologia , Osteogênese , Impressão Tridimensional , Ratos , Silicatos , Estereolitografia , Microtomografia por Raio-XRESUMO
PURPOSE: To trial the use of three-dimensional (3D) printed skull models to guide safe pin placement in two patients with diastrophic dysplasia (DTD) requiring prolonged pre-fusion halo-gravity traction (HGT). METHODS: Two sisters aged 8 (ML) and 4 (BL) with DTD were planned for staged fusion for progressive kyphoscoliosis. Both sisters were admitted for pre-fusion HGT. Models of their skulls were generated from computer tomography (CT) scans using Mimics Innovation Suite and printed on a Guider II in polylactic acid. The 3D models were cut axially proximal to the skull equator, in-line where pins are usually inserted, allowing identification of the thickest skull portion to guide pin placement. RESULTS: Eight pins were inserted into each patient's skull. Postoperative CT scans demonstrated adequate pin position. Pre-traction Cobb angles were 122° and 128° for ML and BL, improving to 83° and 86° following traction. Duration of HGT was 182 and 238 days for ML and BL. Prior to fusion, both patients returned to theatre twice for exchange of loose pins and there was one incidence of pin site infection. Surgery was performed via a posterior instrumented fusion. Postoperatively, both patients remained in their halos for 3 months. One pin in BL was removed for loosening. Both patients achieved fusion union by 9 months. CONCLUSION: 3D models of the skull can be a useful tool to guide safe pin placement in patients with skeletal dysplasias, who require prolonged pre-fusion HGT for severe deformity correction.
Assuntos
Nanismo , Modelos Anatômicos , Impressão Tridimensional , Pinos Ortopédicos , Criança , Pré-Escolar , Nanismo/cirurgia , Feminino , HumanosRESUMO
BACKGROUND: Spine fusion is a common procedure for the treatment of severe scoliosis, a frequent and challenging deformity associated with Neurofibromatosis type 1 (NF1). Moreover, deficiencies in NF1-Ras-MEK signaling affect bone formation and resorption that in turn impacts on spine fusion outcomes. METHODS: In this study we describe a new model for AdCre virus induction of Nf1 deficiency in the spines of Nf1flox/flox mice. The virus is delivered locally to the mouse spine in a fusion procedure induced using BMP-2. Systemic adjunctive treatment with the MEK inhibitor (MEKi) PD0325901 and the bisphosphonate zoledronic acid (ZA) were next trialed in this model. RESULTS: AdCre delivery resulted in abundant fibrous tissue (Nf1null +393%, P < 0.001) and decreased marrow space (Nf1null -67%, P < 0.001) compared to controls. While this did not significantly impact on the bone volume of the fusion mass (Nf1null -14%, P = 0.999 n.s.), the presence of fibrous tissue was anticipated to impact on the quality of spine fusion. Multinucleated TRAP + cells were observed in the fibrous tissues seen in Nf1null spines. In Nf1null spines, MEKi increased bone volume (+194%, P < 0.001) whereas ZA increased bone density (+10%, P < 0.002) versus BMP-2 alone. Both MEKi and ZA decreased TRAP + cells in the fibrous tissue (MEKi -62%, P < 0.01; ZA -43%, P = 0.054). No adverse effects were seen with either MEKi or ZA treatment including weight loss or signs of illness or distress that led to premature euthanasia. CONCLUSIONS: These data not only support the utility of an AdCre-virus induced knockout spine model, but also support further investigation of MEKi and ZA as adjunctive therapies for improving BMP-2 induced spine fusion in the context of NF1.
Assuntos
Neurofibromatose 1 , Animais , Benzamidas , Difenilamina/análogos & derivados , Modelos Animais de Doenças , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Neurofibromatose 1/tratamento farmacológico , Ácido Zoledrônico/farmacologiaRESUMO
BACKGROUND: Bilateral slipped capital femoral epiphysis (SCFE) is common. The management of the contralateral hip in unilateral SCFE remains controversial. The aim of this study was to report on the clinical outcomes using a posterior sloping angle (PSA) threshold of 14.5 degrees for prophylactic fixation in preventing contralateral SCFE. METHODS: Having previously established through a retrospective study that PSA was predictive of future slip, the authors put in place a protocol where patients with unilateral SCFE who had a PSA ≥14.5 degrees on the contralateral side were offered prophylactic fixation. Those with unilateral SCFE presenting between January 2008 and December 2018 with a minimum of 12-month follow-up were included. Patients with renal or endocrine disorders were excluded. Primary outcomes were the number of slips prevented, the number needed to treat, and the complication rate. RESULTS: Of the 219 patients who were included, 114 (52.1%) underwent prophylactic fixation.A PSA threshold of 14.5 degrees prevented 77% of subsequent slips with a number needed to treat of 2.4 in our population. There were no cases of chondrolysis, avascular necrosis, or periprosthetic fracture associated with prophylactic pinning. CONCLUSIONS: Prophylactic fixation using a PSA of 14.5 degrees is safe, decreases unnecessary intervention, and reduces 77% of subsequent SCFE. The PSA can increase over time and the authors recommend that the protocol be applied for the duration of follow-up. LEVEL OF EVIDENCE: Level III.
Assuntos
Articulação do Quadril/cirurgia , Procedimentos Ortopédicos/estatística & dados numéricos , Escorregamento das Epífises Proximais do Fêmur/prevenção & controle , Adolescente , Criança , Feminino , Humanos , Incidência , Masculino , New South Wales/epidemiologia , Estudos Prospectivos , Escorregamento das Epífises Proximais do Fêmur/epidemiologia , Escorregamento das Epífises Proximais do Fêmur/cirurgiaRESUMO
AIM: Australia utilises a selective ultrasound screening programme. The rate of late diagnosis of developmental dysplasia of the hip (DDH) in Australia is increasing. The aim of this study is to quantify the treatment required and compare the 5-year radiological outcomes between early and late diagnosis in children with DDH with frank dislocation. METHODS: We performed a case-matched control study of children with frank DDH dislocations from 2000 to 2010 comparing three groups: children with an early diagnosis successfully treated in a Pavlik harness (SP), children with an early diagnosis who failed Pavlik harness treatment (FP) and children with a late diagnosis (LD). Minimum follow-up was 4 years. RESULTS: A total of 115 hips were included. Patients in the LD group required significantly more open reductions (P < 0.001), acetabular osteotomies (P < 0.001) and femoral osteotomies (P < 0.001). LD was also associated with significantly higher rates of growth disturbance at 46.3%, compared to 20.6% in the FP group and 5% in the SP group (P < 0.001). Overall, there were excellent radiological outcomes in 58.5% of the LD group compared to 79.4% in the FP group and 100% in the SP group. CONCLUSION: In Australia, high rates of LD in DDH persist in the context of selective ultrasound screening. While good radiological outcomes are achievable, a significantly greater level of surgical intervention is required and this is associated with significantly higher rates of growth disturbance. Optimisation of screening in Australia is vital.
Assuntos
Displasia do Desenvolvimento do Quadril , Luxação Congênita de Quadril , Austrália , Criança , Diagnóstico Tardio , Diagnóstico Precoce , Luxação Congênita de Quadril/diagnóstico por imagem , Luxação Congênita de Quadril/terapia , Humanos , Lactente , Aparelhos Ortopédicos , Avaliação de Resultados em Cuidados de Saúde , Resultado do TratamentoRESUMO
PURPOSE: Stable slipped capital femoral epiphysis (SCFE) is often treated with in situ pinning, with the current gold standard being stabilization with a screw perpendicular to the physis. However, this can lead to impingement and a potentially unstable construct. In this study we model the biomechanical effect of two screw positions used for SCFE fixation. We hypothesize that single screw fixation into the centre of the femoral head from the anterior intertrochanteric line (the Universal Entry Point or UEP) provides a more stable construct than single screw fixation perpendicular to the physis with an anterior starting point. METHODS: Sawbone models of moderate SCFE were used to mechanically test the two screw constructs and an unfixed control group. Models were loaded to failure with a shear load applied through the physis in an Instron mechanical tester. The primary outcomes were maximum load, stiffness and energy to failure. RESULTS: Screw fixation into the centre of the femoral head from the UEP resulted in a greater load to failure (+19%), stiffness (+13%) and energy to failure (+45%) than screw fixation perpendicular to the physis. CONCLUSIONS: In this sawbone construct, screw fixation into the centre of the femoral head from the UEP provides greater biomechanical stability than screw fixation perpendicular to the physis. This approach may also benefit by avoiding an intracapsular entry point in soft metaphyseal bone and subsequent risk of impingement and loss of position.
RESUMO
PURPOSE: Precise measurement of elbow range of motion (ROM) post-injury or surgery forms an important part of determining prognosis and the need for further intervention. Clinicians are increasingly incorporating smartphone use in our medical practice; we sought to determine if a smartphone goniometer application is a valid and reliable tool for assessment of elbow ROM in the paediatric patient, compared to visual and goniometer assessment. METHODS: In total, 20 paediatric patients (40 elbows) between six and 15 years of age with an elbow or forearm injury were included in this prospective series. Elbow flexion, extension, pronation and supination were measured independently by two orthopaedic clinicians. Measurements were taken from injured as well as unaffected side using a standardized technique, first with visual estimation and then using a universal goniometer (UG) and smartphone goniometer application Angle Meter via Google Play store (Smart Tool Factory, Istanbul, Turkey). RESULTS: There was excellent interobserver reliability for all three modalities, with average intraclass correlation coefficient (ICC) values greater than 0.90. Visual estimation had the lowest average ICC of 0.92, compared to 0.97 for UG and smartphone. Overall, there was excellent intraobserver reliability between the smartphone application and the gold standard UG for all elbow movements with ICCs ranging between 0.98 to 0.99 and mean absolute difference ranging from 1.1 ± 1.0° to 2.6 ± 1.9°. The smartphone application showed superior agreement over visual estimation when compared to the gold standard UG with lower mean differences and 95% limits of agreement (LOA) falling within 10°. CONCLUSIONS: Our study demonstrates that a smartphone application is a valid and reliable assessment tool for measurement of elbow ROM in paediatric patients, and better than visualization alone. LEVEL OF EVIDENCE: III.
RESUMO
BACKGROUND: Nitrous oxide with intranasal fentanyl is safe and effective in performing closed reduction of paediatric forearm fractures; however, the difference in outcome when compared to those performed under general anaesthesia (GA) is unclear. We aim to compare the outcomes of closed reduction of paediatric forearm fractures under nitrous oxide versus GA. METHODS: This retrospective study based on a prospective change in protocol reviewed the medical records and radiographs of patients with forearm fractures who presented to a tertiary paediatric centre, and who subsequently underwent closed reduction under either nitrous or GA. Data on patient demographics, type and site of fracture and the method of casting were collected. The primary outcomes were loss of reduction, the need for repeat intervention and the rate of complications. RESULTS: There were 301 and 362 patients in the nitrous and GA groups respectively. The overall re-intervention rate was 7.6% in the nitrous group versus 5.0% in the GA group (P = 0.155). There was no significant difference in loss of reduction which involved 9.0% in the nitrous group and 11.3% in the GA group (P = 0.320). There was no significance difference in overall complications. Nausea and vomiting comprised the majority of adverse events. CONCLUSION: Closed reduction of paediatric forearm fractures performed under nitrous oxide with intranasal fentanyl is safe, effective and achieves comparable re-intervention rates and adverse events to those performed under GA in the operating theatre.
Assuntos
Anestésicos Gerais , Fraturas do Rádio , Fraturas da Ulna , Anestesia Geral , Criança , Antebraço , Humanos , Óxido Nitroso , Estudos Prospectivos , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/cirurgia , Estudos RetrospectivosRESUMO
Neurofibromatosis type 1 (NF1) is a genetic disorder that affects a range of tissue systems, however the associated muscle weakness and fatigability can have a profound impact on quality of life. Prior studies using the limb-specific Nf1 knockout mouse (Nf1Prx1-/-) revealed an accumulation of intramyocellular lipid (IMCL) that could be rescued by a diet supplemented with L-carnitine and enriched for medium-chain fatty acids (MCFAs). In this study we used the Nf1Prx1-/- mouse to model a range of dietary interventions designed to reduce IMCL accumulation, and analyze using other modalities including in situ muscle physiology and lipid mass spectrometry. Histological IMCL accumulation was significantly reduced by a range of treatments including L-carnitine and high MCFAs alone. A low-fat diet did not affect IMCL, but did provide improvements to muscle strength. Supplementation yielded rapid improvements in IMCL within 4 weeks, but were lost once treatment was discontinued. In situ muscle measurements were highly variable in Nf1Prx1-/- mice, attributable to the severe phenotype present in this model, with fusion of the hips and an overall small hind limb muscle size. Lipidome analysis enabled segregation of the normal and modified chow diets, and fatty acid data suggested increased muscle lipolysis with the intervention. Acylcarnitines were also affected, suggestive of a mitochondrial fatty acid oxidation disorder. These data support the theory that NF1 is a lipid storage disease that can be treated by dietary intervention, and encourages future human trials.
Assuntos
Metabolismo dos Lipídeos , Força Muscular , Músculo Esquelético/metabolismo , Neurofibromatose 1/dietoterapia , Animais , Carnitina/administração & dosagem , Carnitina/uso terapêutico , Suplementos Nutricionais , Ácidos Graxos/administração & dosagem , Ácidos Graxos/uso terapêutico , Feminino , Camundongos , Músculo Esquelético/fisiopatologia , Neurofibromatose 1/genética , Neurofibromina 1/genéticaRESUMO
Infection of orthopedic implants is a growing clinical challenge to manage due to the proliferation of drug-resistant bacterial strains. In this study, we aimed to investigate whether the treatment of implants with ceragenin-90 (CSA-90), a synthetic compound based on endogenous antibacterial peptides, could prevent infection in a novel rat model of periprosthetic joint infection (PJI) challenged with either local or systemic Staphylococcus aureus. A novel preclinical model of PJI was created using press-fit porous titanium implants in the distal femur of male Wistar rats. Sterile implants were pre-treated with 500 µg CSA-90 in saline. S. aureus was applied either directly at the time of surgery or administered via tail vein injection immediately afterward. Animals were monitored daily for clinical and radiographic evidence of infection for a total of 6 weeks. Post-study microbiological, radiographic, and histological analysis were performed to determine the incidence of PJI and assess osseointegration. CSA-90 treated groups demonstrated a reduced rate of PJI as confirmed by deep tissue swab culture at the time of cull compared with untreated groups with both local (33% vs 100%; P = .009) and systemic (10% vs 90%; P < .0001) S. aureus inoculation. Median survival time also increased from 8 to 17 days and from 8 to 42 days, respectively. In conclusion, this study describes a novel preclinical model of local and hematogenous PJI using a porous metal implant. CSA-90 reduced the incidence of PJI in this model supporting its further development as an antimicrobial coating for orthopedic implants.