Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Curr Med Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934280

RESUMO

Metabolic syndrome (MetS) is a complex of serious pathologies with a high prevalence worldwide. Disruption of mitochondrial biogenesis and its interaction with other cell organelles plays an important role in the development of MetS. Studies have revealed the phenotypic and functional heterogeneity of mitochondria that exist within a single cell and can regulate metabolic signaling pathways, influencing the development of metabolic diseases. Excessive intake of fatty acids leads to changes in fatty acid metabolism that affect the biology of important cell organelles - the lipid droplets, whose specific biology is not fully understood. Perhaps targeted molecular genetic stimulation aimed at regulating the contact between mitochondria and lipids can break the vicious cycle of inflammation in MetS and restore normal cell function, reducing the risk of developing concomitant pathologies. The review describes potential (promising) therapeutic molecular targets associated with mitochondria and lipid droplets, focusing on the proteins involved in their contact and emphasizing their role in the pathogenesis of MetS.

2.
Front Mol Biosci ; 11: 1322687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813101

RESUMO

Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.

3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569635

RESUMO

Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.


Assuntos
Síndrome Metabólica , Monócitos , Humanos , Monócitos/metabolismo , Síndrome Metabólica/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo
4.
Materials (Basel) ; 16(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37629884

RESUMO

Using palladium-catalyzed Suzuki polycondensation, we synthesized new light-emitting fluorene copolymers containing the dicyano derivatives of stilbene and phenanthrene and characterized them by gel permeation chromatography, UV-vis absorption spectroscopy, spectrofluorimetry, and cyclic voltammetry. The photoluminescence spectra of the synthesized polymers show significant energy transfer from the fluorene segments to the dicyanostilbene and 9,10-dicyanophenanthrene units, which is in agreement with the data of theoretical calculations. OLEDs based on these polymers were fabricated with an ITO/PEDOT-PSS (35 nm)/p-TPD (30 nm)/PVK (5 nm)/light emitting layer (70-75 nm)/PF-PO (20 nm)/LiF (1 nm)/Al (80 nm) configuration. Examination of their electroluminescence revealed that copolymers of fluorene with dicyanostilbene show yellow-green luminescence, while polymers with 9,10-dicyanophenanthrene have a greenish-blue emission. The 9,10-dicyanophenanthrene units have a more rigid structure compared to dicyanostilbene and, in OLEDs based on them, an increase in maximum brightness is observed with an increase in the content of the additive to the polymer chain. In particular, the device using fluorene copolymer with 9,10-dicyanophenanthrene (2.5 mol%) exhibited a maximum brightness of 9230 cd/m2 and a maximum current efficiency of 3.33 cd/A.

5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569389

RESUMO

Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.

6.
Biomedicines ; 11(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509589

RESUMO

BACKGROUND: The angiopoietic endothelial dysfunction in ischemic cardiomyopathy (ICMP) remains unexplored. AIM: The identification of the imbalance of endothelial dysfunction mediators and the number of endothelial progenitor (EPC) and desquamated (EDC) cells in patients with coronary heart disease (CHD) with and without ICMP. METHODS: A total of 87 patients (47 with ICMP and 40 without ICMP) were observed. The content of EPCs (CD14+CD34+VEGFR2+) in vein blood and EDCs (CD45-CD146+) in the blood from the coronary sinus and cubital vein was determined by flow cytometry. The contents of HIF-1α and HIF-2α in vein blood as well as that of ADMA and endothelin-1 in sinus plasma and angiopoietin-2, MMP-9 and galectin-3 in both samples were assessed using ELISA, and VEGF, PDGF, SDF-1 and MCP-1 contents using immunofluorescence. RESULTS: ADMA and endothelin-1 levels in the sinus blood were comparable between the patient groups; a deficiency of HIF-1α and excess of HIF-2α were detected in the vein blood of ICMP patients. The EDC content in the vein blood increased in CHD patients regardless of ICMP, and the concentrations of VEGF-A, VEGF-B, PDGF, MCP-1, angiopoietin-2, and MMP-9 were normal. In ICMP patients, vein blood was characterized by an excess of galectin-3 and sinus blood by an excess of EDCs, angiopoietin-2, MMP-9 and galectin-3. CONCLUSION: ICMP is accompanied by angiopoietic endothelial dysfunction.

7.
Front Biosci (Elite Ed) ; 15(2): 14, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369570

RESUMO

Obese individuals are at high risk for developing type 2 diabetes mellitus, cardiovascular diseases, and nonalcoholic fatty liver disease. The aim of this review was to analyze the scientific literature and databases to reveal the fundamental role of neuregulin 4 (NRG4) and its receptors in the development of obesity-associated metabolic disorders. This review demonstrates that NRG4 and its receptors are promising therapeutic targets for the treatment of socially significant obesity-associated pathologies. The review contains nine chapters. Information on the structure of ERBB4 and NRG4 splice isoforms and subsequent activation of downstream targets is presented. The tissue-specific features of the NRG4 and ERBB4 genes and protein production are also highlighted. The role of NRG4 and ERBB3/4 in the pathophysiological mechanisms of the development of metabolic disorders in obesity is discussed in detail. The final chapter of the review is devoted to the miRNA-dependent regulation of NRG4 and ERBB4. Recent studies have shown that several miRNAs regulate ERBB4 expression, but no information was found on the interaction of NRG4 with miRNAs. We now demonstrate the putative relationships between NRG4 and let-7a-5p, let-7c-5p, miR-423-5p, miR-93-5p, miR-23a-3p, and miR-15b-5p for the first time. In addition, we found SNP mutations affecting the interaction of NRG4 and ERBB4 with miRNA in these genes as well as in miRNAs. In summary, this review provides a detailed and comprehensive overview of the role of NRG4 in obesity-associated metabolic disorders. The review summarizes all current studies on this topic and opens perspectives for future research.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Obesidade/complicações , Obesidade/genética , MicroRNAs/genética , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
8.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240338

RESUMO

The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.


Assuntos
Neoplasias Ósseas , Células-Tronco Mesenquimais , MicroRNAs , Osteossarcoma , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Osteossarcoma/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias Ósseas/metabolismo
9.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241889

RESUMO

Graphene oxide is a promising nanomaterial with many potential applications. However, before it can be widely used in areas such as drug delivery and medical diagnostics, its influence on various cell populations in the human body must be studied to ensure its safety. We investigated the interaction of graphene oxide (GO) nanoparticles with human mesenchymal stem cells (hMSCs) in the Cell-IQ system, evaluating cell viability, mobility, and growth rate. GO nanoparticles of different sizes coated with linear or branched polyethylene glycol (P or bP, respectively) were used at concentrations of 5 and 25 µg/mL. Designations were the following: P-GOs (Ø 184 ± 73 nm), bP-GOs (Ø 287 ± 52 nm), P-GOb (Ø 569 ± 14 nm), and bP-GOb (Ø 1376 ± 48 nm). After incubating the cells with all types of nanoparticles for 24 h, the internalization of the nanoparticles by the cells was observed. We found that all GO nanoparticles used in this study exerted a cytotoxic effect on hMSCs when used at a high concentration (25 µg/mL), whereas at a low concentration (5 µg/mL) a cytotoxic effect was observed only for bP-GOb particles. We also found that P-GOs particles decreased cell mobility at a concentration of 25 µg/mL, whereas bP-GOb particles increased it. Larger particles (P-GOb and bP-GOb) increased the rate of movement of hMSCs regardless of concentration. There were no statistically significant differences in the growth rate of cells compared with the control group.


Assuntos
Grafite , Células-Tronco Mesenquimais , Nanopartículas , Nanoestruturas , Humanos , Sistemas de Liberação de Medicamentos , Grafite/farmacologia , Grafite/metabolismo , Células-Tronco Mesenquimais/metabolismo
10.
Biomedicines ; 11(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36830933

RESUMO

Obesity is the main cause of metabolic complications. Fatty liver infiltration is a companion of obesity. NAFLD is associated with impaired energy metabolism with an excess of nutrients. Mitochondrial dynamics are important for the regulation of energy balance, which regulates mitochondrial function, apoptosis, and mitophagy. The aim of this study was to investigate the effect of gp130 on the components of mitochondrial dynamics in a cellular model of steatohepatitis. Addition of IL-6/gp130 contributed to an increase in the percentage of live cells and a decrease in the percentage of dead and apoptotic cells. Addition of IL-6/gp130 increased the expression of NF-kB1 gene and mitochondrial dynamics markers (MFN2 and TFAM) in HepG2 with tBHP/Oleic. Addition of IL-6 or gp130 reduced the expression of cytoprotector genes (HSF1 and HSP70) in HepG2 cell cultures with tBHP/Oleic. Increased mitochondrial dynamics gene activity protected against HepG2 cell death in the steatohepatitis model. Trans-signaling resulted in increased TFAM and MAPLC3B, and decreased DNM1L gene expression in HepG2 with tBHP/Oleic.

11.
J Biomed Mater Res A ; 111(3): 309-321, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36349977

RESUMO

The article deals with the plasma-assisted chemical vapor deposition of 0.3-1.4 µm thick a-C:H:SiOx films in a mixture of argon and polyphenylmethylsiloxane vapor onto the Ti-6Al-4V alloy substrate, which is often used as an implant material. The a-C:H:SiOx film structure is studied by the Fourier-transform infrared and Raman spectroscopies. The pull-off adhesion test assesses the adhesive strength of a-C:H:SiOx films, and the ball-on-disk method is employed to measure their wear rate and friction coefficient. According to these studies, a-C:H:SiOx films are highly adhesive to the Ti-6Al-4V substrate, have low (0.056) friction coefficient and wear rate (9.8 × 10-8  mm3  N-1  m-1 ) in phosphate-buffered saline at 40°C. In vitro studies show neither thrombogenicity nor cytotoxicity of the a-C:H:SiOx film for the human blood mononuclear cells (hBMNCs). The in vitro contact between the hBMNC culture and a-C:H:SiOx films 0.8-1.4 µm thick deposited onto Ti-6Al-4V substrates reduces a 24-hour secretion of pro-inflammatory cytokines and chemokines IL-8, IL-17, TNFα, RANTES, and MCP-1. This reduction is more significant when the film thickness is 1.4 µm and implies its potential anti-inflammatory effect and possible application in cardiovascular surgery. The dependence is suggested for the concentration of anti-inflammatory cytokines and chemokines and the a-C:H:SiOx film thickness, which correlates with the surface wettability and electrostatic potential. The article discusses the possible applications of the anti-inflammatory effect and low thrombogenicity of a-C:H:SiOx films in cardiovascular surgery.


Assuntos
Ligas , Titânio , Humanos , Ligas/farmacologia , Ligas/química , Citocinas , Dureza , Leucócitos , Titânio/farmacologia , Titânio/química , Compostos de Silício/química
12.
Pharmaceutics ; 14(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36559091

RESUMO

Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.

13.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36230996

RESUMO

Cardiovascular diseases remain the leading cause of death and disability. The development of cardiovascular diseases is traditionally associated with various risk factors, most of which are somehow related to an unhealthy lifestyle (smoking, obesity, lack of physical activity, etc.). There are also risk factors associated with genetic predisposition, as well as the presence of concomitant diseases, especially chronic ones. One of the most striking examples is, of course, type 2 diabetes. This metabolic disorder is associated with impaired carbohydrate metabolism. The main clinical manifestation of type 2 diabetes is elevated blood glucose levels. The link between diabetes and CVD is well known, so it is logical to assume that elevated glucose levels may be important, to some extent, in the context of heart and vascular disease. In this review, we tried to summarize data on the possible role of blood glucose as a risk factor for the development of CVD.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Glicemia/metabolismo , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco de Doenças Cardíacas , Humanos , Fatores de Risco
14.
Pharmaceutics ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297616

RESUMO

One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of "osteoimmunology," which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.

15.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289901

RESUMO

Lipid metabolism alterations are an important component of the pathogenesis of atherosclerosis. However, it is now clear that the atherogenesis process involves more than one mechanism, and more than one condition can predispose this condition. Multiple risk factors contribute to the atherosclerosis initiation and define its course. Familial hypercholesterolaemia is a disorder of lipid metabolism that often leads to atherosclerosis development. As is clear from the disease name, the hallmark is the increased levels of low-density lipoprotein cholesterol (LDL-C) in blood. This creates favourable conditions for atherogenesis. In this review, we briefly described the familial hypercholesterolaemia and summarized data on the relationship between familial hypercholesterolaemia and atherosclerosis.

16.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077136

RESUMO

Atherosclerosis is a common cause of cardiovascular disease, which, in turn, is often fatal. Today, we know a lot about the pathogenesis of atherosclerosis. However, the main knowledge is that the disease is extremely complicated. The development of atherosclerosis is associated with more than one molecular mechanism, each making a significant contribution. These mechanisms include endothelial dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, and lipid metabolism disorders. This complexity inevitably leads to difficulties in treatment and prevention. One of the possible therapeutic options for atherosclerosis and its consequences may be metformin, which has already proven itself in the treatment of diabetes. Both diabetes and atherosclerosis are complex metabolic diseases, the pathogenesis of which involves many different mechanisms, including those common to both diseases. This makes metformin a suitable candidate for investigating its efficacy in cardiovascular disease. In this review, we highlight aspects such as the mechanisms of action and targets of metformin, in addition to summarizing the available data from clinical trials on the effective reduction of cardiovascular risks.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus , Metformina , Aterosclerose/metabolismo , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/etiologia , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Estresse Oxidativo
17.
Front Biosci (Schol Ed) ; 14(3): 17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137980

RESUMO

Obesity and osteoporosis are global health problems characterized by high rates of prevalence and mortality due to complications. As people with visceral obesity age, the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) increases, and adipocytes become the predominant stromal cells in the bone marrow microenvironment, which hinders the physiological regeneration and mineralization of bone tissue. Primary and secondary osteoporosis remain severe progressive diseases. Both osteoporosis and obesity are associated with microRNAs (miRNAs) that induce adipogenesis and osteoresorption. This review presents analyses of the roles and clinical potential of miRNAs in the epigenetic control of BMSC differentiation and the formation and function of osteoclasts in osteoporosis with and without obesity. Understanding the fine-tuned regulation of the expression of genes critical for the balance of osteogenesis/osteolysis processes may provide hope for the development of effective and safe osteoporosis therapies in the future.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Diferenciação Celular/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo
18.
J Colloid Interface Sci ; 626: 101-112, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780544

RESUMO

Nowadays, vascular stents are commonly used to treat cardiovascular diseases. This article focuses on the influence of nitrogen doping of titanium dioxide thin films, utilized for coating metallic stents to improve their biological properties and biocompatibility. The hereby-investigated titanium oxide thin films are fabricated by magnetron sputtering in a reactive gas atmosphere consisting of argon and oxygen in the first case and argon, nitrogen and oxygen in the second case. Control of the nitrogen and oxygen gas flow rates, and hence their mixing ratios, allows adjustment of the nitrogen-doping level within the titanium dioxide thin films. A correlation of the thin film internal structure on the in vitro behavior of human mesenchymal stem cells derived from adipose tissue is hereby demonstrated. Different nitrogen doping levels affect the surface energy, the wettability, the cell adhesion and thus the cellular proliferation on top of the thin films. The surface colonization of cells on titanium dioxide thin films decreases up to a nitrogen-doping level of âˆ¼ 3.75 at.%, which is associated with a decreasing polar component of the surface energy. For non-doped titanium dioxide thin films, a weak chondrogenesis of adult human adipose-derived mesenchymal stem cells with lower chondrogenic differentiation compared to glass is observed. An increasing nitrogen-doping level leads to linear increase in the chondrogenic differentiation rate, which is comparable to the control value of uncoated glass. Other investigated differentiated cell types do not display this behavior.


Assuntos
Dióxido de Nitrogênio , Titânio , Argônio , Humanos , Teste de Materiais , Nitrogênio/química , Oxigênio , Stents , Titânio/química , Titânio/farmacologia
19.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744297

RESUMO

This paper focuses mainly on the in vitro study of a five-week biodegradation of a-C:H:SiOx films of different thickness, obtained by plasma-assisted chemical vapor deposition onto Ti-6Al-4V alloy substrate using its pulsed bipolar biasing. In vitro immersion of a-C:H:SiOx films in a solution of 0.9% NaCl was used. It is shown how the a-C:H:SiOx film thickness (0.5-3 µm) affects the surface morphology, adhesive strength, and Na+ and Cl- precipitation on the film surface from the NaCl solution. With increasing film thickness, the roughness indices are reducing a little. The adhesive strength of the a-C:H:SiOx films to metal substrate corresponds to quality HF1 (0.5 µm in thickness) and HF2-HF3 (1.5-3 µm in thickness) of the Rockwell hardness test (VDI 3198) that defines strong interfacial adhesion and is usually applied in practice. The morphometric analysis of the film surface shows that on a-C:H:SiOx-coated Ti-6Al-4V alloy surface, the area occupied by the grains of sodium chloride is lower than on the uncoated surface. The reduction in the ion precipitation from 0.9% NaCl onto the film surface depended on the elemental composition of the surface layer conditioned by the thickness growth of the a-C:H:SiOx film. Based on the results of energy dispersive X-ray spectroscopy, the multiple regression equations are suggested to explain the effect of the elemental composition of the a-C:H:SiOx film on the decreased Na+ and Cl- precipitation. As a result, the a-C:H:SiOx films successfully combine good adhesion strength and rare ion precipitation and thus are rather promising for medical applications on cardiovascular stents and/or friction parts of heart pumps.

20.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613737

RESUMO

The development of "biohybrid" drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)­poly(allylamine hydrochloride) (PAH)-coated spherical micrometer-sized (diameter ~2−3 µm) vaterite (CaCO3) microcapsules (PAH-PSS)6 with the capping PSS layer were prepared after dissolution of the CaCO3 core template. The Cell-IQ phase contrast imaging results showed that hAMSCs internalized all (PAH-PSS)6 microcapsules saturating the intercellular medium (5−90 particles per cell). A strong (r > 0.7) linear dose-dependent and time-dependent (up to 8 days) regression was observed between the in vitro decrease in cell viability and the number of internalized microvesicles. The approximate time-to-complete-death of hAMSCs at different concentrations of microcapsules in culture was 428 h (1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and 170 h (1:90 ratio). By varying the number of microcontainers loaded into the cells (from 1:10 to 1:90), a dose-dependent exponential decrease in both the movement rate and division rate of hAMSCs was observed. A real-time cell analysis (RTCA) of the effect of (PAH-PSS)6 microcapsules (from 1:5 to 1:20) on hAMSCs also showed a dose- and time-dependent decrease in cell longevity after a 50h study at ratios of 1:10 and 1:20. The incorporation of microcapsules (1:5, 1:20, and 1:45) resulted in a dose-dependent increase in 24−48 h secretion of GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) chemokines in hAMSC culture. In turn, the normalization or inhibition of chemokine secretion occurred after 72 h, except for MIF levels below 5−20 microcapsules, which were internalized by MSCs. Thus, the proposed concept of controlling the lifespan of MSC-based DDS using a dose of internalized PAH-PSS microcapsules could be useful for biomedical applications. (PAH-PSS)6 microcapsule ratios of 1:5 and 1:10 have little effect on the lifespan of hAMSCs for a long time (up to 14−18 days), which can be recommended for regenerative therapy and tissue bioengineering associated with low oncological risk. The microcapsule ratios of 1:20 and 1:45 did not significantly restrict the migratory activity of hAMSCs-based DDS during the time interval required for tissue delivery (up to 4−5 days), followed by cell death after 10 days. Therefore, such doses of microcapsules can be used for hAMSC-based DDS in oncotheranostics.


Assuntos
Sistemas de Liberação de Medicamentos , Longevidade , Humanos , Cápsulas , Polieletrólitos , Carbonato de Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA