Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 59(33): 10228-10235, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361951

RESUMO

Photoconductive PbSe thin films are highly important for mid-infrared imaging applications. However, the photoconductive mechanism is not well understood so far. Here we provide additional insight on the photoconductivity mechanism using transmission electron microscopy, x-ray photoelectron microscopy, and electrical characterizations. Polycrystalline PbSe thin films were deposited by a chemical bath deposition method. Potassium iodide (KI) was added during the deposition process to improve the photoresponse. Oxidation and iodization were performed to sensitize the thin films. The temperature-dependence Hall effect results show that a strong hole-phonon interaction occurs in oxidized PbSe with KI. It indicates that about half the holes are trapped by KI-induced self-trapped hole centers (Vk center), which results in increasing dark resistance. The photo Hall effect results show that the hole concentration increases significantly under light exposure in sensitized PbSe, which indicates the photogenerated electrons are compensated by trapped holes. The presence of KI in the PbSe grains was confirmed by I 3d5/2 core-level x-ray photoelectron spectra. The energy dispersive x-ray spectra obtained in the scanning transmission electron microscope show the incorporation of iodine during the iodization process on the top of PbSe grains, which can create an iodine-incorporated PbSe outer shell. The iodine-incorporated PbSe releases electrons to recombine with holes in the PbSe layer so that the resistance of sensitized PbSe is about 800 times higher than that of PbSe without the iodine-incorporated layer. In addition, oxygen found in the outer shell of PbSe can act as an electron trap. Therefore, the photoresponse of sensitized PbSe is from the difference between the high dark resistance (by KI addition and iodine incorporation) and the low resistance after IR exposure due to electron compensation (by electron traps at grain boundary and electron-hole recombination in KI hole traps).

2.
ACS Appl Mater Interfaces ; 11(38): 35389-35393, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31468959

RESUMO

Thermal annealing of Ti contacts is commonly implemented in the fabrication of MoS2 devices; however, its effects on interface chemistry have not been previously reported in the literature. In this work, the thermal stability of titanium contacts deposited on geological bulk single crystals of MoS2 in ultrahigh vacuum (UHV) is investigated with X-ray photoelectron spectroscopy and scanning transmission electron microscopy (STEM). In the as-deposited condition, the reaction of Ti with MoS2 is observed resulting in a diffuse interface between the two materials that comprises metallic molybdenum and titanium sulfide compounds. Annealing Ti/MoS2 sequentially at 100, 300, and 600 °C for 30 min in UHV results in a gradual increase in the reaction products as measured by XPS. Accordingly, STEM reveals the formation of a new ordered phase and a Mo-rich layer at the interface following heating. Due to the high degree of reactivity, the Ti/MoS2 interface is not thermally stable even at a transistor operating temperature of 100 °C, while post-deposition annealing further enhances the interfacial reactions. These findings have important consequences for electrical transport properties, highlighting the importance of interface chemistry in the metal contact design and fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA