Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38844140

RESUMO

PURPOSE: For men with intermediate-risk prostate cancer treated with definitive therapy, the addition of androgen deprivation therapy (ADT) reduces the risk of distant metastasis and cancer-related mortality. However, the absolute benefit of ADT varies by baseline cancer risk. Estimates of prognosis have improved over time, and little is known about ADT decision making in the modern era. We sought to characterize variability and identify factors associated with intended ADT use within the Michigan Radiation Oncology Quality Consoritum (MROQC). MATERIALS AND METHODS: Patients with localized prostate cancer undergoing definitive radiation therapy were enrolled from June 9, 2020, to June 26, 2023 (n = 815). Prospective data were collected using standardized patient, physician, and physicist forms. Intended ADT use was prospectively defined and was the primary outcome. Associations with patient, tumor, and practice-related factors were tested with multivariable analyses. Random intercept modeling was used to estimate facility-level variability. RESULTS: Five hundred seventy patients across 26 facilities were enrolled with intermediate-risk disease. ADT was intended for 46% of men (n = 262/570), which differed by National Comprehensive Cancer Network favorable intermediate-risk (23.5%, n = 38/172) versus unfavorable intermediate-risk disease (56.3%, n = 224/398; P < .001). After adjusting for the statewide case mix, the predicted probability of intended ADT use varied significantly across facilities, ranging from 15.4% (95% CI, 5.4%-37.0%) to 71.7% (95% CI, 57.0%-82.9%), with P < .01. Multivariable analyses showed that grade group 3 (OR, 4.60 [3.20-6.67]), ≥50% positive cores (OR, 2.15 [1.43-3.25]), and prostate-specific antigen 10 to 20 (OR, 1.87 [1.24-2.84]) were associated with ADT use. Area under the curve was improved when incorporating MRI adverse features (0.76) or radiation treatment variables (0.76), but there remained significant facility-level heterogeneity in all models evaluated (P < .05). CONCLUSIONS: Within a state-wide consortium, there is substantial facility-level heterogeneity in intended ADT use for men with intermediate-risk prostate cancer. Future efforts are necessary to identify patients who will benefit most from ADT and to develop strategies to standardize appropriate use.

2.
Med Phys ; 51(4): 2905-2923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456622

RESUMO

BACKGROUND: FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications. PURPOSE: A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: (1) large area coverage; (2) a low mass profile; (3) a linear response over a broad dynamic range; (4) radiation hardness; (5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation dosimetry and excellent spatial resolution. METHODS: The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ∼10 cm. A field programmable gate array (FPGA) data acquisition system generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (86Kr+26 and protons). A prototype FBSM was fabricated and then tested in various radiation beams that included FLASH level dose per pulse electron beams, and a hospital RT clinic with electron beams. RESULTS: Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 min at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude versus beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of >40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 µm. Tests of the firmware beta version show successful operation at 20 000 Hz frame rate or 50 µs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 µs. CONCLUSIONS: The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 µs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.


Assuntos
Prótons , Radiometria , Cintilografia , Dosagem Radioterapêutica
3.
ArXiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37292473

RESUMO

Background: FLASH Radiotherapy (RT) is an emergent cancer radiotherapy modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications. Purpose: A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: 1) large area coverage; 2) a low mass profile; 3) a linear response over a broad dynamic range; 4) radiation hardness; 5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation do-simetry and excellent spatial resolution. Methods: The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ~10 cm. A field programmable gate array (FPGA) data acquisition system (DAQ) generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (86Kr+26 and protons). A prototype FBSM was fabricated and then tested in various radiation beams that included FLASH level dose per pulse electron beams, and a hospital radiotherapy clinic with electron beams. Results: Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 minutes at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude vs beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of > 40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 µm. Tests of the firmware beta version show successful operation at 20,000 Hz frame rate or 50 µs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 µs. Conclusions: The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥ 50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 µs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.

4.
Nat Biotechnol ; 41(8): 1160-1167, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36593414

RESUMO

Ionizing radiation acoustic imaging (iRAI) allows online monitoring of radiation's interactions with tissues during radiation therapy, providing real-time, adaptive feedback for cancer treatments. We describe an iRAI volumetric imaging system that enables mapping of the three-dimensional (3D) radiation dose distribution in a complex clinical radiotherapy treatment. The method relies on a two-dimensional matrix array transducer and a matching multi-channel preamplifier board. The feasibility of imaging temporal 3D dose accumulation was first validated in a tissue-mimicking phantom. Next, semiquantitative iRAI relative dose measurements were verified in vivo in a rabbit model. Finally, real-time visualization of the 3D radiation dose delivered to a patient with liver metastases was accomplished with a clinical linear accelerator. These studies demonstrate the potential of iRAI to monitor and quantify the 3D radiation dose deposition during treatment, potentially improving radiotherapy treatment efficacy using real-time adaptive treatment.


Assuntos
Neoplasias , Planejamento da Radioterapia Assistida por Computador , Coelhos , Animais , Planejamento da Radioterapia Assistida por Computador/métodos , Diagnóstico por Imagem , Fígado/diagnóstico por imagem , Doses de Radiação , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
5.
Adv Radiat Oncol ; 8(2): 101029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578278

RESUMO

Purpose: Head and neck (HN) radiation (RT) treatment planning is complex and resource intensive. Deviations and inconsistent plan quality significantly affect clinical outcomes. We sought to develop a novel automated virtual integrative (AVI) knowledge-based planning application to reduce planning time, increase consistency, and improve baseline quality. Methods and Materials: An in-house write-enabled script was developed from a library of 668 previously treated HN RT plans. Prospective hazard analysis was performed, and mitigation strategies were implemented before clinical release. The AVI-planner software was retrospectively validated in a cohort of 52 recent HN cases. A physician panel evaluated planning limitations during initial deployment, and feedback was enacted via software refinements. A final second set of plans was generated and evaluated. Kolmogorov-Smirnov test in addition to generalized evaluation metric and weighted experience score were used to compare normal tissue sparing between final AVI planner versus respective clinically treated and historically accepted plans. A t test was used to compare the interactive time, complexity, and monitor units for AVI planner versus manual optimization. Results: Initially, 86% of plans were acceptable to treat, with 10% minor and 4% major revisions or rejection recommended. Variability was noted in plan quality among HN subsites, with high initial quality for oropharynx and oral cavity plans. Plans needing revisions were comprised of sinonasal, nasopharynx, P-16 negative squamous cell carcinoma unknown primary, or cutaneous primary sites. Normal tissue sparing varied within subsites, but AVI planner significantly lowered mean larynx dose (median, 18.5 vs 19.7 Gy; P < .01) compared with clinical plans. AVI planner significantly reduced interactive optimization time (mean, 2 vs 85 minutes; P < .01). Conclusions: AVI planner reliably generated clinically acceptable RT plans for oral cavity, salivary, oropharynx, larynx, and hypopharynx cancers. Physician-driven iterative learning processes resulted in favorable evolution in HN RT plan quality with significant time savings and improved consistency using AVI planner.

6.
Adv Radiat Oncol ; 7(1): 100768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35071827

RESUMO

PURPOSE: Due to a gap in published guidance, we describe our robust cycle of in-house clinical software development and implementation, which has been used for years to facilitate the safe treatment of all patients in our clinics. METHODS AND MATERIALS: Our software development and implementation cycle requires clarity in communication, clearly defined roles, thorough commissioning, and regular feedback. Cycle phases include design requirements and use cases, development, physics evaluation testing, clinical evaluation testing, and full clinical release. Software requirements, release notes, test suites, and a commissioning report are created and independently reviewed before clinical use. Software deemed to be high-risk, such as those that are writable to a database, incorporate the use of a formal, team-based hazard analysis. Incident learning is used to both guide initial development and improvements as well as to monitor the safe use of the software. RESULTS: Our standard process builds in transparency and establishes high expectations in the development and use of custom software to support patient care. Since moving to a commercial planning system platform in 2013, we have applied our team-based software release process to 16 programs related to scripting in the treatment planning system for the clinic. CONCLUSIONS: The principles and methodology described here can be implemented in a range of practice settings regardless of whether or not dedicated resources are available for software development. In addition to teamwork with defined roles, documentation, and use of incident learning, we strongly recommend having a written policy on the process, using phased testing, and incorporating independent oversight and approval before use for patient care. This rigorous process ensures continuous monitoring for and mitigatation of any high risk hazards.

7.
Med Phys ; 48(10): 6137-6151, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431520

RESUMO

PURPOSE: Electron-based ultra-high dose rate radiation therapy (UHDR-RT), also known as Flash-RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV-RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR-RT have raised the need for accurate real-time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR-RT. METHODS: The detection of induced acoustic waves following a single UHDR pulse of a modified 6 MeV 21EX Varian Clinac in a uniform porcine gelatin phantom that is brain-tissue equivalent was simulated for an ideal ultrasound transducer. The full 3D dose distributions in the phantom for a 1 × 1 cm2 field were simulated using EGSnrc (BEAMnrc∖DOSXYZnrc) Monte Carlo (MC) codes. The relative dosimetry simulations were verified with dose experimental measurements using Gafchromic films. The spatial dose distribution was converted into an initial pressure source spatial distribution using the medium-dependent dose-pressure relation. The MATLAB-based toolbox k-Wave was then used to model the propagation of acoustic waves through the phantom and perform time-reversal (TR)-based imaging reconstruction. The effect of the various linear accelerator (linac) operating parameters, including linac pulse duration and pulse repetition rate (frequency), were investigated as well. RESULTS: The MC dose simulation results agreed with the film measurement results, specifically at the central beam region up to 80% dose within approximately 5% relative error for the central profile region and a local relative error of <6% for percentage dose depth. IRAI-based FWHM of the radiation beam was within approximately 3 mm relative to the MC-simulated beam FWHM at the beam entrance. The real-time pressure signal change agreed with the dose changes proving the capability of the iRAI for predicting the beam position. IRAI was tested through 3D simulations of its response to be based on the temporal changes in the linac operating parameters on a dose per pulse basis as expected theoretically from the pressure-dose proportionality. The pressure signal amplitude obtained through 2D simulations was proportional to the dose per pulse. The instantaneous pressure signal amplitude decreases as the linac pulse duration increases, as predicted from the pressure wave generation equations, such that the shorter the linac pulse the higher the signal and the better the temporal (spatial) resolutions of iRAI. The effect of the longer linac pulse duration on the spatial resolution of the 3D constructed iRAI images was corrected for linac pulse deconvolution. This correction has improved the passing rate of the 1%/1 mm gamma test criteria, between the pressure-constructed and dosimetric beam characteristics, to as high as 98%. CONCLUSIONS: A full simulation workflow was developed for testing the effectiveness of iRAI as a promising relative dosimetry tool for UHDR-RT radiation therapy. IRAI has shown the advantage of 3D dose mapping through the dose signal linearity and, hence, has the potential to be a useful dosimeter at depth dose measurement and beam localization and, hence, potentially for in vivo dosimetry in UHDR-RT.


Assuntos
Aceleradores de Partículas , Radiometria , Acústica , Animais , Método de Monte Carlo , Imagens de Fantasmas , Radiação Ionizante , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Suínos
8.
Med Phys ; 47(10): 5090-5101, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32592212

RESUMO

PURPOSE: FLASH radiotherapy (FLASH-RT) is a novel irradiation modality with ultra-high dose rates (>40 Gy/s) that have shown tremendous promise for its ability to enhance normal tissue sparing while maintaining comparable tumor cell eradication toconventional radiotherapy (CONV-RT). Due to its extremely high dose rates, clinical translation of FLASH-RT is hampered by risky delivery and current limitations in dosimetric devices, which cannot accurately measure, in real time, dose at deeper tissue. This work aims to investigate ionizing radiation acoustic imaging (iRAI) as a promising image-guidance modality for real-time deep tissue dose measurements during FLASH-RT. The underlying hypothesis is that iRAI can enable mapping of dose deposition with respect to surrounding tissue with a single linear accelerator (linac) pulse precision in real time. In this work, the relationship between iRAI signal response and deposited dose was investigated as well as the feasibility of using a proof-of-concept dual-modality imaging system of ultrasound and iRAI for treatment beam co-localization with respect to underlying anatomy. METHODS: Two experimental setups were used to study the feasibility of iRAI for FLASH-RT using 6 MeV electrons from a modified Varian Clinac. First, experiments were conducted using a single element focused transducer to take a series of point measurements in a gelatin phantom, which was compared with independent dose measurements using GAFchromic film. Secondly, an ultrasound and iRAI dual-modality imaging system utilizing a phased array transducer was used to take coregistered two-dimensional (2D) iRAI signal amplitude images as well as ultrasound B-mode images, to map the dose deposition with respect to surrounding anatomy in an ex vivo rabbit liver model with a single linac pulse precision. RESULTS: Using a single element transducer, iRAI measurements showed a highly linear relationship between the iRAI signal amplitude and the linac dose per pulse (r2  = 0.9998) with a repeatability precision of 1% and a dose resolution error <2.5% in a homogenous phantom when compared to GAFchromic film dose measurements. These phantom results were used to develop a calibration curve between the iRAI signal response and the delivered dose per pulse. Subsequently, a normalized depth dose curve was generated that agreed with film measurements with an RMSE of 0.0243, using correction factors to account for deviations in measurement conditions with respect to calibration. Experiments on the ex-vivo rabbit liver model demonstrated that a 2D iRAI image could be generated successfully from a single linac pulse, which was fused with the B-mode ultrasound image to provide information about the beam position with respect to surrounding anatomy in real time. CONCLUSION: This work demonstrates the potential of using iRAI for real-time deep tissue dosimetry in FLASH-RT. Our results show that iRAI signals are linear with dose and can accurately map the delivered radiation dose with respect to soft tissue anatomy. With its ability to measure dose for individual linac pulses at any location within surrounding soft tissue while identifying where that dose is being delivered anatomically in real time, iRAI can be an indispensable tool to enable safe and efficient clinical translation of FLASH-RT.


Assuntos
Aceleradores de Partículas , Radiometria , Acústica , Animais , Imagens de Fantasmas , Coelhos , Radiação Ionizante , Dosagem Radioterapêutica
9.
Med Phys ; 45(4): 1369-1378, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29474748

RESUMO

PURPOSE: Investigate the impact on prostate orientation caused by use and removal of a Foley catheter, and the dosimetric impact on men prospectively treated with prostate stereotactic body radiotherapy (SBRT). METHODS: Twenty-two men underwent a CT simulation with a Foley in place (FCT), followed immediately by a second treatment planning simulation without the Foley (TPCT). The change in prostate orientation was determined by rigid registration of three implanted transponders between FCT and TPCT and compared to measured orientation changes during treatment. The impact on treatment planning and delivery was investigated by analyzing the measured rotations during treatment relative to both CT scans, and introducing rotations of ±15° in the treatment plan to determine the maximum impact of allowed rotations. RESULTS: Removing the Foley caused a statistically significant prostate rotation (P < 0.0028) compared to normal biological motion in 60% of patients. The largest change in rotation due to removing a Foley occurs about the left-right axis (tilt) which has a standard deviation two to five times larger than changes in rotation about the Sup-Inf (roll) and Ant-Post (yaw) axes. The change in tilt due to removing a Foley for prone and supine patients was -1.1° ± 6.0° and 0.3° ± 7.4°, showing no strong directional bias. The average tilt during treatment was -1.6° ± 7.1° compared to the TPCT and would have been -2.0° ± 7.1° had the FCT been used as the reference. The TPCT was a better or equivalent representation of prostate tilt in 82% of patients, vs 50% had the FCT been used for treatment planning. However, 92.7% of fractions would still have been within the ±15° rotation limit if only the FCT were used for treatment planning. When rotated ±15°, urethra V105% = 38.85Gy  < 20% was exceeded in 27% of the instances, and prostate (CTV) coverage was maintained above D95%  > 37 Gy in all but one instance. CONCLUSIONS: Removing a Foley catheter can cause large prostate rotations. There does not appear to be a clear dosimetric benefit to obtaining the CT scan with a Foley catheter to define the urethra given the changes in urethral position from removing the Foley catheter. If urethral sparing is desired without the use of a Foley, utilization of an MRI to define the urethra may be necessary, or a pseudo-urethral planning organ at risk volume (PRV) may be used to limit dosimetric hot spots.


Assuntos
Artefatos , Catéteres , Movimento , Neoplasias da Próstata/radioterapia , Radiocirurgia , Ensaios Clínicos como Assunto , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/fisiopatologia , Radiometria , Planejamento da Radioterapia Assistida por Computador , Rotação , Tomografia Computadorizada por Raios X/instrumentação
10.
Pract Radiat Oncol ; 8(1): 40-47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304991

RESUMO

PURPOSE: The use of stereotactic body radiation therapy (SBRT) for prostate cancer has been reported predominantly from single institutional studies, although concerns for broader adoption exist. METHODS AND MATERIALS: From 2011 through 2013, 66 men were accrued to a phase 2 trial at 5 centers. SBRT consisted of 5 fractions of 7.4 Gy to a total dose of 37 Gy using conventional linear accelerators. Electromagnetic transponders were used for motion management. Health-related quality of life (HRQOL) was evaluated via the Expanded Prostate Cancer Index Composite 26 questionnaire. Acute and late toxicities were collected according to Common Terminology Criteria for Adverse Events, version 4.0. Linear mixed modeling was performed to assess changes in HRQOL over time. RESULTS: Median follow-up was 36 months. All men had low- or intermediate-risk disease. There have been 0 biochemical recurrences. No grade 3 urinary or bowel toxicity was reported. Twenty-three percent of patients had acute grade 2 urinary toxicity, with 9% late grade 2 urinary toxicity. Four percent and 5% experienced acute or late grade 2+ bowel toxicity, respectively. Urinary bother and bowel HRQOL transiently decreased during the first 6 to 12 months post-SBRT, and then returned to baseline. In men with good erectile function at baseline, sexual HRQOL declined during the first 6 months and stabilized thereafter. On linear mixed modeling, the strongest predictor of sustained bowel and sexual HRQOL was baseline HRQOL. CONCLUSIONS: In this multi-institutional phase 2 clinical trial using continuous real-time evaluation of prostate motion, prostate SBRT has excellent intermediate-term tumor control with mild and expected treatment-related side effects.


Assuntos
Próstata/patologia , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
11.
Adv Radiat Oncol ; 2(3): 503-514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114619

RESUMO

PURPOSE: To develop statistical dose-volume histogram (DVH)-based metrics and a visualization method to quantify the comparison of treatment plans with historical experience and among different institutions. METHODS AND MATERIALS: The descriptive statistical summary (ie, median, first and third quartiles, and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was visualized through the creation of statistical DVH plots. Detailed distribution parameters were calculated and stored in JavaScript Object Notation files to facilitate management, including transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure DVH curves were scored against computed statistical DVHs and weighted experience scores (WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions. Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer who were treated with conventional fractionation, and 94 with liver cancer who were treated with stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH, WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the treatment planning system. Benchmarking with normal tissue complication probability scores was carried out to compare the behavior of GEM and WES scores. RESULTS: DVH curves from historical treatment plans were characterized and presented, with difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative evaluations by GEM and/or WES compared favorably with the normal tissue complication probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits into a continuous model reflecting physician objectives and historical experience. CONCLUSIONS: Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize the quantitative comparison with historical experiences and among institutions. WES and GEM metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic context into a set of standardized scoring metrics. Together, they provide a practical approach for incorporating big data into clinical practice for treatment plan evaluations.

12.
J Appl Clin Med Phys ; 17(1): 387-395, 2016 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-26894365

RESUMO

Proper quality assurance (QA) of the radiotherapy process can be time-consuming and expensive. Many QA efforts, such as data export and import, are inefficient when done by humans. Additionally, humans can be unreliable, lose attention, and fail to complete critical steps that are required for smooth operations. In our group we have sought to break down the QA tasks into separate steps and to automate those steps that are better done by software running autonomously or at the instigation of a human. A team of medical physicists and software engineers worked together to identify opportunities to streamline and automate QA. Development efforts follow a formal cycle of writing software requirements, developing software, testing and commissioning. The clinical release process is separated into clinical evaluation testing, training, and finally clinical release. We have improved six processes related to QA and safety. Steps that were previously performed by humans have been automated or streamlined to increase first-time quality, reduce time spent by humans doing low-level tasks, and expedite QA tests. Much of the gains were had by automating data transfer, implementing computer-based checking and automation of systems with an event-driven framework. These coordinated efforts by software engineers and clinical physicists have resulted in speed improvements in expediting patient-sensitive QA tests.


Assuntos
Processamento Eletrônico de Dados/normas , Neoplasias/radioterapia , Reconhecimento Automatizado de Padrão/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Software , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
13.
Radiother Oncol ; 110(2): 291-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24507766

RESUMO

PURPOSE: To evaluate rectal dose and post-treatment patient-reported bowel quality of life (QOL) following radiation therapy for prostate cancer. METHODS: Patient-reported QOL was measured at baseline and 2-years via the expanded prostate cancer index composite (EPIC) for 90 patients. Linear regression modeling was performed using the baseline score for the QUANTEC normal tissue complication probability model and dose volume histogram (DVH) parameters for the whole and segmented rectum (superior, middle, and inferior). RESULTS: At 2-years the mean summary score declined from a baseline of 96.0-91.8. The median volume of rectum treated to ≥70 Gy (V70) was 11.7% for the whole rectum and 7.0%, 24.4%, and 1.3% for the inferior, middle, and superior rectum, respectively. Mean dose to the whole and inferior rectum correlated with declines in bowel QOL while dose to the mid and superior rectum did not. Low (V25-V40), intermediate (V50-V60) and high (V70-V80) doses to the inferior rectum influenced bleeding, incontinence, urgency, and overall bowel problems. Only the highest dose (V80) to the mid-rectum correlated with rectal bleeding and overall bowel problems. CONCLUSIONS: Segmental DVH analysis of the rectum reveals associations between bowel QOL and inferior rectal dose that could significantly influence radiation planning and prognostic models.


Assuntos
Neoplasias da Próstata/radioterapia , Lesões por Radiação/etiologia , Reto/efeitos da radiação , Idoso , Estudos de Coortes , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/fisiopatologia , Humanos , Modelos Lineares , Masculino , Qualidade de Vida , Lesões por Radiação/fisiopatologia , Dosagem Radioterapêutica , Radioterapia Conformacional/efeitos adversos , Doenças Retais/etiologia , Doenças Retais/fisiopatologia , Reto/fisiopatologia
14.
Med Phys ; 40(8): 081711, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927308

RESUMO

PURPOSE: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. METHODS: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. RESULTS: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. CONCLUSIONS: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.


Assuntos
Ondas de Rádio , Calibragem , Fenômenos Mecânicos , Incerteza
15.
Int J Radiat Oncol Biol Phys ; 85(5): 1246-53, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265567

RESUMO

PURPOSE: To assess the impacts of patient age and comorbid illness on rectal toxicity following external beam radiation therapy (EBRT) for prostate cancer and to assess the Qualitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) normal tissue complication probability (NTCP) model in this context. METHODS AND MATERIALS: Rectal toxicity was analyzed in 718 men previously treated for prostate cancer with EBRT (≥75 Gy). Comorbid illness was scored using the Charlson Comorbidity Index (CCMI), and the NTCP was evaluated with the QUANTEC model. The influence of clinical and treatment-related parameters on rectal toxicity was assessed by Kaplan-Meier and Cox proportional hazards models. RESULTS: The cumulative incidence of rectal toxicity grade ≥2 was 9.5% and 11.6% at 3 and 5 years and 3.3% and 3.9% at 3 and 5 years for grade ≥3 toxicity, respectively. Each year of age predicted an increasing relative risk of grade ≥2 (P<.03; hazard ratio [HR], 1.04 [95% confidence interval {CI}, 1.01-1.06]) and ≥3 rectal toxicity (P<.0001; HR, 1.14 [95% CI,1.07-1.22]). Increasing CCMI predicted rectal toxicity where a history of either myocardial infarction (MI) (P<.0001; HR, 5.1 [95% CI, 1.9-13.7]) or congestive heart failure (CHF) (P<.0006; HR, 5.4 [95% CI, 0.6-47.5]) predicted grade ≥3 rectal toxicity, with lesser correlation with grade ≥2 toxicity (P<.02 for MI, and P<.09 for CHF). An age comorbidity model to predict rectal toxicity was developed and confirmed in a validation cohort. The use of anticoagulants increased toxicity independent of age and comorbidity. NTCP was prognostic for grade ≥3 (P=.015) but not grade ≥2 (P=.49) toxicity. On multivariate analysis, age, MI, CHF, and an NTCP >20% all correlated with late rectal toxicity. CONCLUSIONS: Patient age and a history of MI or CHF significantly impact rectal toxicity following EBRT for the treatment of prostate cancer, even after controlling for NTCP.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Lesões por Radiação/epidemiologia , Reto/efeitos da radiação , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Comorbidade , Insuficiência Cardíaca/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Infarto do Miocárdio/epidemiologia , Neoplasias da Próstata/epidemiologia , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Fatores de Tempo
16.
Int J Radiat Oncol Biol Phys ; 85(1): 230-6, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22554583

RESUMO

PURPOSE: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). METHODS AND MATERIALS: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D95 and V79 were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. RESULTS: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. CONCLUSIONS: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.


Assuntos
Campos Eletromagnéticos , Movimento , Próstata/efeitos da radiação , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Próstata/anatomia & histologia , Neoplasias da Próstata/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Rotação , Carga Tumoral
17.
Radiat Oncol ; 7: 82, 2012 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-22681643

RESUMO

BACKGROUND: Low-risk prostate cancer (PCa) patients have excellent outcomes, with treatment modality often selected by perceived effects on quality of life. Acute urinary symptoms are common during external beam radiotherapy (EBRT), while chronic symptoms have been linked to urethral dose. Since most low-risk PCa occurs in the peripheral zone (PZ), we hypothesized that EBRT using urethral sparing intensity modulated radiation therapy (US-IMRT) could improve urinary health-related quality of life (HRQOL) while maintaining high rates of PCa control. METHODS: Patients with National Comprehensive Cancer Network (NCCN) defined low-risk PCa with no visible lesion within 5 mm of the prostatic urethra on MRI were randomized to US-IMRT or standard (S-) IMRT. Prescription dose was 75.6 Gy in 41 fractions to the PZ + 3-5 mm for US-IMRT and to the prostate + 3 mm for S-IMRT. For US-IMRT, mean proximal and distal urethral doses were limited to 65 Gy and 74 Gy, respectively. HRQOL was assessed using the Expanded Prostate Cancer Index (EPIC) Quality of Life questionnaire. The primary endpoint was change in urinary HRQOL at 3 months. RESULTS: From June 2004 to November 2006, 16 patients were randomized, after which a futility analysis concluded that continued accrual was unlikely to demonstrate a difference in the primary endpoint. Mean change in EPIC urinary HRQOL at 3 months was -0.5 ± 11.2 in the US-IMRT arm and +3.9 ± 15.3 in the S-IMRT arm (p = 0.52). Median PSA nadir was higher in the US-IMRT arm (1.46 vs. 0.78, p = 0.05). At 4.7 years median follow-up, three US-IMRT and no S-IMRT patients experienced PSA failure (p = 0.06; HR 8.8, 95% CI 0.9-86). Two out of 3 patients with PSA failure had biopsy-proven local failure, both located contralateral to the original site of disease. CONCLUSIONS: Compared with S-IMRT, US-IMRT failed to improve urinary HRQOL and resulted in higher PSA nadir and inferior biochemical control. The high rate of PSA failure and contralateral local failures in US-IMRT patients, despite careful selection of MRI-screened low-risk patients, serve as a cautionary tale for focal PCa treatments.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Uretra/efeitos da radiação , Humanos , Masculino , Qualidade de Vida
18.
Prostate Cancer ; 2012: 130579, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22111005

RESUMO

The purpose of this work is to determine appropriate radiation therapy beam margins to account for intrafraction prostate translations for use with real-time electromagnetic position monitoring and correction strategies. Motion was measured continuously in 35 patients over 1157 fractions at 5 institutions. This data was studied using van Herk's formula of (αΣ + γσ') for situations ranging from no electromagnetic guidance to automated real-time corrections. Without electromagnetic guidance, margins of over 10 mm are necessary to ensure 95% dosimetric coverage while automated electromagnetic guidance allows the margins necessary for intrafraction translations to be reduced to submillimeter levels. Factors such as prostate deformation and rotation, which are not included in this analysis, will become the dominant concerns as margins are reduced. Continuous electromagnetic monitoring and automated correction have the potential to reduce prostate margins to 2-3 mm, while ensuring that a higher percentage of patients (99% versus 90%) receive a greater percentage (99% versus 95%) of the prescription dose.

19.
J Appl Clin Med Phys ; 12(3): 3398, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21844848

RESUMO

The purpose of this study was to determine the dosimetric impact of density variations observed in water-equivalent solid slabs. Measurements were performed using two 30 cm × 30 cm water-equivalent slabs, one being 4 cm think and the other 5 cm thick. The location and extent of density variations were determined by computed tomography (CT) scans. Additional imaging measurements were made with an amorphous silicon megavoltage portal imaging device and an ultrasound unit. Dosimetric measurements were conducted with a 2D ion chamber array, and a scanned diode in water. Additional measurements and calculations were made of small rectilinear void inhomogeneities formed with water-equivalent slabs, using a 2D ion chamber array and the convolution superposition algorithm. Two general types of density variation features were observed on CT images: 1) regions of many centimeters across, but typically only a few millimeters thick, with electron densities a few percent lower than the bulk material, and 2) cylindrical regions roughly 0.2 cm in diameter and up to 20 cm long with electron densities up to 5% lower than the surrounding material. The density variations were not visible on kilovoltage, megavoltage or ultrasound images. The dosimetric impact of the density variations were not detectable to within 0.1% using the 2D ion chamber array or the scanning photon diode at distances 0.4 cm to 2 cm beyond the features. High-resolution dosimetric calculations using the convolution-superposition algorithm with density corrections enabled on CT-based datasets showed no discernable dosimetric impact. Calculations and measurements on simulated voids place the upper limit on possible dosimetric variations from observed density variations at much less than 0.6%. CT imaging of water-equivalent slabs may reveal density variations which are otherwise unobserved with kV, MV, or ultrasound imaging. No dosimetric impact from these features was measureable with an ion chamber array or scanned photon diode. Consequently, they were determined to be acceptable for all clinical use.


Assuntos
Fótons , Radiometria/métodos , Água/química , Algoritmos , Humanos , Íons , Imagens de Fantasmas , Efeitos da Radiação , Radiometria/instrumentação , Radioterapia de Alta Energia , Silício/química , Tomografia Computadorizada por Raios X , Ultrassonografia , Ecrans Intensificadores para Raios X
20.
Phys Plasmas ; 17(4)2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20838426

RESUMO

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA