Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Chin Med ; 52(3): 821-839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699996

RESUMO

Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Panax notoginseng , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Saponinas , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Panax notoginseng/química , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Saponinas/farmacologia , Masculino , Ratos , Humanos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Fitoterapia
2.
Biophys J ; 85(5): 3319-28, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14581233

RESUMO

We addressed the mechanical basis for how embryonic chick dorsal root ganglion growth cones turn on a uniform substrate of laminin-1. Turning is significantly correlated with lamellipodial area but not with filopodial length. We assessed the lamellipodial contribution to turning by asymmetric micro-CALI of myosin isoforms that causes localized lamellipodial expansion (myosin 1c) or filopodial retraction (myosin V). Episodes of asymmetric micro-CALI of myosin 1c (or myosin 1c and V together) caused significant turning of the growth cone. In contrast, repeated micro-CALI of myosin V or irradiation without added antibody did not turn growth cones. These findings argue that lamellipodia and not filopodia are necessary for growth cone turning. To model the role of myosin 1c on growth cone turning, we fitted the measured trajectories from asymmetric micro-CALI of myosin 1c-treated and untreated growth cones to the persistent random walk model. The first parameter in this equation, root-mean-square speed, is indistinguishable between the two data sets whereas the second parameter, the persistence of motion, is significantly increased (2.5-fold) as a result of asymmetric inactivation of myosin 1c by micro-CALI. This analysis demonstrates that growth cone turning results from an increase in the persistence of directional motion rather than a change in speed. Taken together, our results suggest that myosin 1c is a molecular correlate for directional persistence underlying growth cone motility.


Assuntos
Movimento Celular/fisiologia , Cones de Crescimento/fisiologia , Cones de Crescimento/ultraestrutura , Modelos Neurológicos , Proteínas Motores Moleculares/fisiologia , Movimento/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Divisão Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Simulação por Computador , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Estatísticos , Miosina Tipo I , Miosina Tipo V/fisiologia , Miosinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA