Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Mater Chem B ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136412

RESUMO

Besides their limited preservation capacity and low biosafety, traditional fruit preservation procedures exacerbate "white pollution" because they utilize excessive plastic. Herein, an environmentally friendly one-pot method was developed to obtain degradable polyvinyl alcohol (PVA), where the hydroxyl radicals generated through the reaction between hydrogen peroxide (H2O2) and iron ions functioned to oxidize PVA. The oxidized PVA (OPVA-1.0) with abundant ketone groups, reduced crystallinity, and short molecular chains was completely degraded into H2O and CO2 after being buried in the soil for ∼60 days. An improvement in its degradation rate did not weaken the mechanical properties of OPVA-1.0 compared to other modified PVA films because the adverse effect of decreased crystallinity on its mechanical performance was offset by its ion coordination. Alternatively, the tensile strength or toughness of OPVA-1.0 was enhanced due to its internal multi-level interactions including molecular chain entanglement, hydrogen bonding, and metal coordination bonds. More interestingly, OPVA-1.0 was water-welded into various products in a recyclable way owing to its reversible physical bonds, where it was sprayed, dipped, or brushed conformally onto different perishable fruits to delay their ripening by 5-14 days. Based on the cellular biocompatibility and biosafety evaluations in mice, OPVA-1.0 obtained by the facile oxidation strategy was demonstrated to alleviate "white pollution" and delay the ripening of fruits effectively.

2.
Clin Rheumatol ; 43(9): 3019-3028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990379

RESUMO

IgG4-related diseases (IgG-RDs) are a group of fibroinflammatory diseases that affect a variety of tissues, resulting in tumour-like effects and/or organ dysfunction. Monoclonal gammopathies (MGPs) are a group of disorders characterized by clonal proliferation of plasma cells or lymphoid cells resulting in the secretion of a monoclonal immunoglobulin. Cases of MGPs in IgG4-RDs coexisting with plasma cell dyscrasias and lymphoid neoplasms have been reported over the past few years. Therefore, the results of examinations of M protein in IgG4-RD patients should be interpreted with caution. Herein, we report the case of a 58-year-old male with a history of type 2 diabetes who presented with submandibular masses, anosmia, swollen lymph nodes, proteinuria, and renal impairment. Laboratory tests revealed hyperglobulinemia and elevated levels of IgG4 (124 g/L) and serum-free light chains (sFLCs). Serum protein electrophoresis (SPEP) revealed an M spike of 5.6 g/dL, and immunofixation electrophoresis (IPE) revealed biclonal IgG-κ and IgG-λ. The patient underwent bone marrow, lymph node, and kidney biopsy, which ruled out plasma cell disorders and lymphoma. He was finally diagnosed with an IgG4-RD comorbid with diabetic nephropathy. The findings in this case highlight that significant activation of B cells in IgG4-RD patients, especially those with multiorgan involvement can lead to significant hyperglobulinemia and high sFLC and IgG4 levels, which are more pronounced in the setting of renal impairment. Relatively high concentrations of polyclonal IgG4 can give rise to a focal band bridging the ß and γ fractions, which may mimic the appearance of a monoclonal band on SPEP and monoclonal gammaglobulinemia in IFE. The patient experienced considerable improvement in his symptoms after rituximab combined with glucocorticoid therapy, and a monoclonal immunoglobulin was not detected.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Imunoglobulina G , Paraproteinemias , Humanos , Masculino , Pessoa de Meia-Idade , Imunoglobulina G/sangue , Doença Relacionada a Imunoglobulina G4/diagnóstico , Doença Relacionada a Imunoglobulina G4/complicações , Paraproteinemias/diagnóstico , Paraproteinemias/imunologia , Paraproteinemias/complicações , Diagnóstico Diferencial , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/diagnóstico
4.
Bioact Mater ; 36: 330-357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38496036

RESUMO

Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38453435

RESUMO

BACKGROUND: VS-505 (AP301), an acacia and ferric oxyhydroxide polymer, is a novel fiber-iron-based phosphate binder. This two-part phase 2 study evaluated the tolerability, safety, and efficacy of oral VS-505 administered three times daily with meals in treating hyperphosphatemia in chronic kidney disease (CKD) patients receiving maintenance hemodialysis (MHD). METHODS: In Part 1, patients received dose-escalated treatment with VS-505 2.25, 4.50, and 9.00 g/day for 2 weeks each, guided by serum phosphorus levels. In Part 2, patients received randomized, open-label, fixed-dosage treatment with VS-505 (1.50, 2.25, 4.50, or 6.75 g/day) or sevelamer carbonate 4.80 g/day for 6 weeks. The primary efficacy endpoint was the change in serum phosphorus. RESULTS: The study enrolled 158 patients (Part 1: 25; Part 2: 133), with 130 exposed to VS-505 in total. VS-505 was well tolerated. The most common adverse events were gastrointestinal disorders, mainly feces discolored (56%) and diarrhea (15%; generally during weeks 1‒2 of treatment). Most gastrointestinal disorders resolved without intervention, and none were serious. In Part 1, serum phosphorus significantly improved (mean change -2.0 mg/dL; 95% confidence interval -2.7, -1.4) after VS-505 dose escalation. In Part 2, serum phosphorus significantly and dose-dependently improved in all VS-505 arms, with clinically meaningful reductions with VS-505 4.50 and 6.75 g/day, and sevelamer carbonate 4.80 g/day (mean change -1.6 (-2.2, -1.0), -1.8 (-2.4, -1.2), and -1.4 (-2.2, -0.5) mg/dL, respectively). In both Parts, serum phosphorus reductions occurred within 1 week of VS-505 initiation, returning to baseline within 2 weeks of VS-505 discontinuation. CONCLUSION: VS-505, a novel phosphate binder, was well tolerated with a manageable safety profile, and effectively and dose-dependently reduced serum phosphorus in CKD patients with hyperphosphatemia receiving MHD. Clinical Trial registration number: NCT04551300.

6.
Bioresour Technol ; 399: 130563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461871

RESUMO

An ultralight 3D carbon fiber aerogel with good flexibility is developed via soaking cotton in water and then calcinating at a high temperature. This cotton-derived carbon material is constituted by amorphous carbon and retains slight oxygen-containing groups. Besides, a lot of hollow carbon nanocapsules are yielded on the inside surface, resulting in abundant micropores and mesopores. Systemic investigations explore the molecular transformation from cotton to carbon fiber, and the formation of carbon nanocapsules. In the adsorption process for methyl orange (MO), this carbon fiber aerogel exhibits both a rapid adsorption rate and the ultrahigh adsorbability of 862.9 mg/g, outclassing most of carbon materials reported. Therefore, a dynamic sewage treatment system is built and consecutively removes hydrosoluble pollution for a long-term running time. For the cotton-derived carbon fiber aerogel, the good mechanical flexibility, excellent adsorption property, and high stability jointly provide a vast application prospect in future industrial wastewater remediation.


Assuntos
Nanocápsulas , Poluentes Químicos da Água , Fibra de Carbono , Carbono , Esgotos , Adsorção , Gossypium
8.
Adv Sci (Weinh) ; 11(17): e2305877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444306

RESUMO

Precise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs. In the middle cerebral artery occlusion (MCAO) mouse model, the delivery efficiency to ischemic stroke tissues increases by fourfold. APTS dramatically reduces the formation of NETs by 2.2-fold via reprogramming NETosis to apoptosis in neutrophils via a reactive oxygen species scavenging-mediated citrullinated histone 3 inhibition pathway. Noteworthy, A151 within neutrophils is repackaged into apoptotic bodies following the death pattern reprogramming, which, when engulfed by microglia, polarizes microglia to an anti-inflammatory M2 phenotype. After four times treatment, the cerebral infarction area in the APTS group decreases by 5.1-fold. Thus, APTS provides a feasible, efficient, and practical drug delivery approach for reshaping the immune microenvironment and treating brain disorders in the central nervous system.


Assuntos
Modelos Animais de Doenças , Armadilhas Extracelulares , AVC Isquêmico , Microglia , Neutrófilos , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , AVC Isquêmico/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Nanopartículas , Camundongos Endogâmicos C57BL
9.
Front Genet ; 15: 1325484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356698

RESUMO

Yellowhorn (Xanthoceras sorbifolium Bunge) is an oil-bearing tree species in northern China. In this study, we used yellowhorn from Heilongjiang to analyze the morphological and physiological changes of fruit development and conducted transcriptome sequencing. The results showed that the fruit experienced relatively slow growth from fertilization to DAF20 (20 days after flowering). From DAF40 to DAF60, the fruit entered an accelerated development stage, with a rapid increase in both transverse and longitudinal diameters, and the kernel contour developed completely at DAF40. From DAF60 to DAF80, the transverse and vertical diameters of the fruit developed slowly, and the overall measures remained stable until maturity. The soluble sugar, starch, and anthocyanin content gradually accumulated until reaching a peak at DAF80 and then rapidly decreased. RNA-seq analysis revealed differentially expressed genes (DEGs) in the seed coat and kernel, implying that seed components have different metabolite accumulation mechanisms. During the stages of seed kernel development, k-means clustering separated the DEGs into eight sub-classes, indicating gene expression shifts during the fruit ripening process. In subclass 8, the fatty acid biosynthesis pathway was enriched, suggesting that this class was responsible for lipid accumulation in the kernel. WGCNA revealed ten tissue-specific modules for the 12 samples among 20 modules. We identified 54 fatty acid biosynthesis pathway genes across the genome, of which 14 was quantified and confirmed by RT-qPCR. Most genes in the plastid synthesis stage showed high expression during the DAF40-DAF60 period, while genes in the endoplasmic reticulum synthesis stage showed diverse expression patterns. EVM0012847 (KCS) and EVM0002968 (HCD) showed similar high expression in the early stages and low expression in the late stages. EVM0022385 (HCD) exhibited decreased expression from DAF40 to DAF60 and then increased from DAF60 to DAF100. EVM0000575 (KCS) was increasingly expressed from DAF40 to DAF60 and then decreased from DAF60 to DAF100. Finally, we identified transcription factors (TFs) (HB-other, bHLH and ARF) that were predicted to bind to fatty acid biosynthesis pathway genes with significant correlations. These results are conducive to promoting the transcriptional regulation of lipid metabolism and the genetic improvement in terms of high lipid content of yellowhorn.

10.
J Control Release ; 367: 661-675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301928

RESUMO

Bacteria have shown great potential in anti-tumor treatment, and an attenuated strain of Salmonella named VNP20009 has been shown to be safe in clinical trials. However, colonized bacteria recruit neutrophils into the tumor, which release NETs to capture and eliminate bacteria, compromising bacterial-based tumor treatment. In this study, we report a neutrophil hitchhiking nanoparticles (SPPS) that block the formation of NET to enhance bacteria-mediated tumor therapy. In the 4 T1 tumor-bearing mouse model, following 24 h of bacterial therapy, there was an approximately 3.0-fold increase in the number of neutrophils in the bloodstream, while the amount of SPPS homing to tumor tissue through neutrophil hitchhiking increased approximately 2.0-fold. It is worth noting that the NETs in tumors significantly decreased by approximately 2.0-fold through an intracellular ROS scavenging-mediated NETosis reprogramming, thereby increasing bacterial vitality by 1.9-fold in tumors. More importantly, the gene drug (siBcl-2) loaded in SPPS can be re-encapsulated in apoptotic bodies by reprogramming neutrophils from NETosis to apoptosis, and enable the redelivery of drugs to tumor cells, further boosting the antitumor efficacy with a synergistic effect, resulting in about 98% tumor inhibition rate and 90% survival rate.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Neutrófilos , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico , Bactérias
11.
Nat Commun ; 15(1): 1855, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424147

RESUMO

Nonlinear nanophotonic circuits, renowned for their compact form and integration capabilities, hold potential for advancing high-capacity optical signal processing. However, limited practicality arises from low nonlinear conversion efficiency. Transition metal dichalcogenides (TMDs) could present a promising avenue to address this challenge, given their superior optical nonlinear characteristics and compatibility with diverse device platforms. Nevertheless, this potential remains largely unexplored, with current endeavors predominantly focusing on the demonstration of TMDs' coherent nonlinear signals via free-space excitation and collection. In this work, we perform direct integration of TMDs onto a plasmonic nanocircuitry. By controlling the polarization angle of the input laser, we show selective routing of second-harmonic generation (SHG) signals from a MoSe2 monolayer within the plasmonic circuit. Routing extinction ratios of 14.86 dB are achieved, demonstrating good coherence preservation in this hybrid nanocircuit. Additionally, our characterization indicates that the integration of TMDs leads to a 13.8-fold SHG enhancement, compared with the pristine nonlinear plasmonic nanocircuitry. These distinct features-efficient SHG generation, coupling, and controllable routing-suggest that our hybrid TMD-plasmonic nanocircuitry could find immediate applications including on-chip optical frequency conversion, selective routing, switching, logic operations, as well as quantum operations.

12.
Medicine (Baltimore) ; 103(1): e36218, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181259

RESUMO

Rheumatoid arthritis (RA) is a prevalent autoimmune disorder with a significant global economic burden. Epigenetic modifications, particularly DNA methylation, play a crucial role in RA. This study conducted a bibliometric analysis to explore the evolving trends and predominant themes in RA and DNA methylation research over the past two decades. A total of 1800 articles met the inclusion criteria, and the analysis revealed consistent growth in the literature, with a notable increase in output after 2019. The research involved 70 countries, 2139 academic institutions, 23,365 unique authors, and 58,636 co-cited authors. The United States emerged as a dominant contributor in this research domain. The significance of DNA methylation in shaping research directions for RA management is increasingly evident. Recent investigations have shed light on the pivotal role of DNA methylation in RA, particularly in characterizing synovial tissue and exploring the underlying mechanisms of disease pathogenesis. This study provides valuable insights into the landscape of DNA methylation research in RA and highlights the importance of epigenetics in autoimmune diseases.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Metilação de DNA , Artrite Reumatoide/genética , Epigênese Genética , Bibliometria
14.
ACS Nano ; 17(24): 25037-25044, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096421

RESUMO

Graphene possesses an exotic band structure that spans a wide range of important technological wavelength regimes for photodetection, all within a single material. Conventional methods aimed at enhancing detection efficiency often suffer from an extended response time when the light is switched off. The task of achieving ultrafast broad-band photodetection with a high gain remains challenging. Here, we propose a devised architecture that combines graphene with a photosensitizer composed of an alternating strip superstructure of WS2-WSe2. Upon illumination, n+-WS2 and p+-WSe2 strips create alternating electron- and hole-conduction channels in graphene, effectively overcoming the tradeoff between the responsivity and switch time. This configuration allows for achieving a responsivity of 1.7 × 107 mA/W, with an extrinsic response time of 3-4 µs. The inclusion of the superstructure booster enables photodetection across a wide range from the near-ultraviolet to mid-infrared regime and offers a distinctive photogating route for high responsivity and fast temporal response in the pursuit of broad-band detection.

15.
Heliyon ; 9(9): e19634, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809537

RESUMO

The Belt and Road Initiative (BRI) is a global initiative that is gaining increasing attention, participation, and communication globally. However, most existing studies on BRI-related communication are based on BRI communication as the background. As an important theory of communication, network agenda-setting (NAS) theory, as an important theory of communication, is used to focus on an increasing number of objects that are rarely studied by international organizations. The United Nations (UN) news website, which is the official website of the largest international governmental organization, is available in nine languages (as of May 7, 2021), including Chinese, English, French, Russian, Arabic, Spanish, Portuguese, Swahili, and Hindi, providing news reports based on audience research. Thus, this study analyzed the BRI agenda network of UN's nine languages web pages, calculates BRI-related elements and correlation strength, and forms a multidimensional matrix in conjunction with the NAS theory. Finally, based on the summary statistics of the BRI agenda network, the UN news website agenda network was summarized and formed. The correlation strength of nine languages and 26 content pieces was analyzed using statistical principal components and cluster analysis. The result showed that the BRI agenda network of the UN news website had a strong link with the UN's sustainable development goals. Note that the BRI agendas in different languages can influence each other, making sustainability a crucial element for both BRI and the UN. In addition, the NAS theory can work within the same organization. However, there is still room for improvement in BRI's sustainable global discourse communication, such as audience analysis, language-ability building, and diversification of communication bodies and methods.

16.
ACS Nano ; 17(11): 10181-10190, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37212535

RESUMO

Modern infrared (IR) microscopy, communication, and sensing systems demand control of the spectral characteristics and polarization states of light. Typically, these systems require the cascading of multiple filters, polarization optics, and rotating components to manipulate light, inevitably increasing their sizes and complexities. Here, we report two-terminal mid-infrared (mid-IR) emitters, in which tuning the polarity of the applied bias can switch their emission peak wavelengths and linear polarization states along two orthogonal orientations. Our devices are composed of two back-to-back p-n junctions formed by stacking anisotropic light-emitting materials, black phosphorus and black arsenic-phosphorus with MoS2. By controlling the crystallographic orientations and engineering the band profile of heterostructures, the emissions of two junctions exhibit distinct spectral ranges and polarization directions; more importantly, these two electroluminescence (EL) units can be independently activated, depending on the polarity of the applied bias. Furthermore, we show that when operating our emitter under the polarity-switched pulse mode, the time-averaged EL exhibits the characteristics of broad spectral coverage, encompassing the entire first mid-IR atmospheric window (λ: 3-5 µm), and electrically tunable spectral shapes.

17.
Front Pharmacol ; 14: 1184250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153789

RESUMO

Background: Emerging evidence has suggested a pro-oncogenic role of calponin 1 (CNN1) in the initiation of a variety of cancers. Despite this, CNN1 remains unknown in terms of its effects and mechanisms on angiogenesis, prognosis, and immunology in cancer. Materials and Methods: The expression of CNN1 was extracted and analyzed using the TIMER, UALCAN, and GEPIA databases. Meanwhile, we analyzed the diagnostic value of CNN1 by using PrognoScan and Kaplan-Meier plots. To elucidate the value of CNN1 in immunotherapy, we used the TIMER 2.0 database, TISIDB database, and Sangerbox database. Gene set enrichment analysis (GSEA) was used to analyze the expression pattern and bio-progression of CNN1 and the vascular endothelium growth factor (VEGF) in cancer. The expressions of CNN1 and VEGF in gastric cancer were confirmed using immunohistochemistry. We used Cox regression analysis to investigate the association between pathological characteristics, clinical prognosis, and CNN1 and VEGF expressions in patients with gastric cancer. Results: CNN1 expression was higher in normal tissues than it was in tumor tissues of most types of cancers. However, the expression level rebounds during the development of tumors. High levels of CNN1 indicate a poor prognosis for 11 tumors, which include stomach adenocarcinoma (STAD). There is a relationship between CNN1 and tumor-infiltrating lymphocytes (TILs), and the marker genes NRP1 and TNFRSF14 of TILs are significantly related to CNN1 expression in gastric cancers. The GSEA results confirmed the lower expression of CNN1 in tumors when compared to normal tissues. However, CNN1 again showed an increasing trend during tumor development. In addition, the results also suggest that CNN1 is involved in angiogenesis. The immunohistochemistry results validated the GSEA result (take gastric cancer as an example). Cox analysis suggested that high CNN1 expression and high VEGF expression are closely associated with poor clinical prognosis. Conclusion: Our study has shown that CNN1 expression is aberrantly elevated in various cancers and positively correlates with angiogenesis and the immune checkpoint, contributing to cancer progression and poor prognosis. These results suggest that CNN1 could serve as a promising candidate for pan-cancer immunotherapy.

19.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837211

RESUMO

Reaction-boned silicon carbide (RB-SiC) is considered a new material for large lightweight ground-based space telescopes due to its high specific stiffness, low thermal deformation, and excellent optical quality. The excellent mechanical properties of RB-SiC result in the low efficiency of traditional polishing and mechanical polishing. In this paper, a polishing method for RB-SiC based on a femtosecond laser is proposed to improve surface quality. A theoretical heat conduction model was established in the process of femtosecond laser irradiation of SiC. We analyzed the ablation type and calculated the single-pulse ablation threshold of SiC, which verified the feasibility of femtosecond laser polishing. Further, the effects of polishing parameters on the polished surface quality were analyzed by a series of experiments, and the optimal parameters were selected. It was observed to improve polishing efficiency and can replace the intermediate steps of traditional mechanical polishing.

20.
Genes (Basel) ; 14(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36833248

RESUMO

Insect gut microbes have important roles in host feeding, digestion, immunity, development, and coevolution with pests. The fall armyworm, Spodoptera frugiperda (Smith, 1797), is a major migratory agricultural pest worldwide. The effects of host plant on the pest's gut bacteria remain to be investigated to better understand their coevolution. In this study, differences in the gut bacterial communities were examined for the fifth and sixth instar larvae of S. frugiperda fed on leaves of different host plants (corn, sorghum, highland barley, and citrus). The 16S rDNA full-length amplification and sequencing method was used to determine the abundance and diversity of gut bacteria in larval intestines. The highest richness and diversity of gut bacteria were in corn-fed fifth instar larvae, whereas in sixth instar larvae, the richness and diversity were higher when larvae were fed by other crops. Firmicutes and Proteobacteria were dominant phyla in gut bacterial communities of fifth and sixth instar larvae. According to the LDA Effect Size (LEfSe) analysis, the host plants had important effects on the structure of gut bacterial communities in S. frugiperda. In the PICRUSt2 analysis, most predicted functional categories were associated with metabolism. Thus, the host plant species attacked by S. frugiperda larvae can affect their gut bacterial communities, and such changes are likely important in the adaptive evolution of S. frugiperda to host plants.


Assuntos
Mariposas , Animais , Spodoptera/microbiologia , Larva , Bactérias , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA