Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Small ; : e2311079, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733224

RESUMO

Ternary topological insulators have attracted worldwide attention because of their broad application prospects in fields such as magnetism, optics, electronics, and quantum computing. However, their potential and electrochemical mechanisms in sodium ion batteries (SIBs) and hybrid capacitors (SIHCs) have not been fully studied. Herein, a composite material comprising vacancy-defects ternary topological insulator Bi2Se2Te encapsulated in mesoporous carbon spheres (Bi2Se2Te@C) is designed. Bi2Se2Te with ample vacancy-defects has a wide interlayer spacing to enable frequent insertion/extraction of Na+ and boost reaction kinetics within the electrode. Meanwhile, the Bi2Se2Te@C with optimized yolk-shell structure can buffer the volume variation without breaking the outer protective carbon shell, ensuring structural stability and integrity. As expected, the Bi2Se2Te@C electrode delivers high reversible capacity and excellent rate capability in half SIB cells. Various electrochemical analyses and theoretical calculations manifest that Bi2Se2Te@C anode confirms the synergistic effect of ternary chalcogenide systems and suitable void space yolk-shell structure. Consequently, the full cells of SIB and SIHC coupled with Bi2Se2Te@C anode exhibit good performance and high energy/power density, indicating its widespread practical applications. This design is expected to offer a reliable strategy for further exploring advanced topological insulators in Na+-based storage systems.

2.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
3.
Int Immunopharmacol ; 131: 111888, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522139

RESUMO

OBJECTIVES: Osteoarthritis (OA) is a whole-joint disease in which the role of the infrapatellar fat pad (IFP) in its pathogenesis is unclear. Our study explored the cellular heterogeneity of IFP to understand OA and identify therapeutic targets. METHODS: Single-cell and single-nuclei RNA sequencing were used to analyze 10 IFP samples, comprising 5 from OA patients and 5 from healthy controls. Analyses included differential gene expression, enrichment, pseudotime trajectory, and cellular communication, along with comparative studies with visceral and subcutaneous fats. Key subcluster and pathways were validated using multiplex immunohistochemistry. RESULTS: The scRNA-seq performed on the IFPs of the OA and control group profiled the gene expressions of over 49,674 cells belonging to 11 major cell types. We discovered that adipose stem and progenitor cells (ASPCs), contributing to the formation of both adipocytes and synovial-lining fibroblasts (SLF). Interstitial inflammatory fibroblasts (iiFBs) were a subcluster of ASPCs that exhibit notable pro-inflammatory and proliferative characteristics. We identified four adipocyte subtypes, with one subtype showing a reduced lipid synthesis ability. Furthermore, iiFBs modulated the activities of macrophages and T cells in the IFP. Compared to subcutaneous and visceral adipose tissues, iiFBs represented a distinctive subpopulation of ASPCs in IFP that regulated cartilage proliferation through the MK pathway. CONCLUSION: This study presents a comprehensive single-cell transcriptomic atlas of IFP, uncovering its complex cellular landscape and potential impact on OA progression. Our findings highlight the role of iiFBs in OA, especially through MK pathway, opening new avenues for understanding OA pathogenesis and developing novel targeted therapies.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/patologia , Tecido Adiposo/patologia , Articulação do Joelho/patologia , Perfilação da Expressão Gênica , Fibroblastos/metabolismo
4.
Phytochemistry ; 219: 113989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218305

RESUMO

Four previously undescribed and highly oxygenated α-pyrone-containing mycotoxins designated citreoviridins (E‒H), and an unreported eremophilane-type sesquiterpenoid namely aureoterrolide N, were isolated from the culture broth of Aspergillus aureoterreus. Those isolates were inferred from extensive spectroscopic methods and theoretical computation, where their absolute configurations were unambiguously determined by coupling constants following an empirical rule for the acyclic vicinal diol, theoretical ECD calculation, and NMR computation using the GIAO method and DP4+ analysis. Among them, citreoviridins E‒H are four stereoisomers of a citreoviridin derivative, featuring a methylated α-pyrone, an oxidized polyene linker, and a tetrahydrofuran ring. Cytotoxicity assay of all isolates demonstrated that aureoterrolide N exhibited weak inhibitory effect against human cancer cell line HL-60 with an inhibition rate of 55.2% at 40.0 µM.


Assuntos
Aspergillus , Micotoxinas , Sesquiterpenos , Humanos , Pironas/farmacologia , Pironas/química , Micotoxinas/farmacologia , Estrutura Molecular , Sesquiterpenos Policíclicos , Sesquiterpenos/farmacologia , Espectroscopia de Ressonância Magnética
5.
Biomed Pharmacother ; 171: 116101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228032

RESUMO

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease with a poor prognosis. Alpinetin (ALP), derived from Alpinia katsumadai Hayata, has shown potential as a therapeutic measure of various diseases. However, the utilization of ALP in managing pulmonary fibrosis and its underlying mechanisms are still not fully understood. METHODS: A well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM) was used in this study. The antifibrotic effects of ALP on histopathologic manifestations and expression levels of fibrotic markers were examined. Subsequently, the impact of ALP on fibroblast differentiation, proliferation, apoptosis, and associated signaling pathways was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that ALP effectively mitigated BLM-induced pulmonary fibrosis in mice, as evidenced by histopathological manifestations and the expression levels of fibrotic markers. Furthermore, the in vitro experiments demonstrated that ALP treatment attenuated the ability of fibroblasts to differentiate into myofibroblasts. Mechanically, our findings provided evidence that ALP suppressed fibroblast-to-myofibroblast differentiation by repressing TGF-ß/ALK5/Smad signaling pathway. ALP was found to possess the capability of inhibiting fibroblast proliferation and promoting apoptosis of fibroblasts induced by TGF-ß. CONCLUSION: In general, ALP may exert therapeutic effects on pulmonary fibrosis by modulating the differentiation, proliferation, and apoptosis of fibroblasts. Although its safety has been demonstrated in mice, further studies are required to investigate the efficacy of ALP in treatment of patients with IPF.


Assuntos
Bleomicina , Flavanonas , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Bleomicina/farmacologia , Fibroblastos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células , Pulmão , Camundongos Endogâmicos C57BL , Diferenciação Celular
6.
J Colloid Interface Sci ; 658: 373-382, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113546

RESUMO

In this work, potassium acetate (KAc) was added during the synthesis of a Zn-Fe based metal-organic framework (Fe-ZIF-8) to increase the fixed amount of Fe while simultaneously enhancing the number of pores. Electrospinning was utilized to embed KAc-modified Fe-ZIF-8 (Fe-ZIF-8-Ac) into the polyacrylonitrile nanofiber mesh, to obtain a network composite (Fe@NC-Ac) with hierarchical porous structure. Fe@NC-Ac was co-pyrolyzed with thiourea, resulting in Fe, N, S co-doped carbon electrocatalyst. The electrochemical tests indicated that the prepared catalyst displayed relatively remarkable oxygen reduction reaction (ORR) catalytic activity, with an onset potential (Eonset) of 1.08 V (vs. reversible hydrogen electrode, RHE) and a half-wave potential (E1/2) of 0.94 V, both higher than those of the commercial Pt/C (Eonset = 0.95 V and E1/2 = 0.84 V), respectively. Assembled into Zn-air batteries, the optimized catalyst exhibited higher open circuit voltage (1.698 V) and peak power density (90 mW cm-2) than those of the commercial 20 wt% Pt/C (1.402 V and 80 mW cm-2), respectively. This work provided a straightforward manufacturing strategy for the design of hierarchical porous carbon-based ORR catalysts with desirable performance.

7.
Environ Toxicol ; 39(3): 1847-1857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133212

RESUMO

INTRODUCTION: Lung adenocarcinoma (LUAD) is a major health concern worldwide. Single-cell RNA-sequencing (scRNA-seq) provides a valuable platform for exploring the intratumoral heterogeneity in LUAD and holds great potential for facilitating the development and application of personalized therapeutic approaches. METHODS: The TCGA-LUAD (n = 503), GSE68465 (n = 442), GSE72094 (n = 398), and GSE26939 (n = 115) datasets were retrieved for prognostic assessment. Subgroup analysis was performed for the epithelial cells, endothelial cells, immune cells, and fibroblasts, and the transcription factors and tumor-related pathways enriched in each subgroup were analyzed using PROGENy and DoRothEA package. The InferCNV software was used to calculate the copy number variations (CNVs) in tumor cell subgroups with normal epithelial cells as the reference. The association between the annotated cell types and survival was analyzed using the Scissor software. RESULTS: We identified eight major cell types in LUAD, namely epithelial cells, NK cells, T and B cells, endothelial cells, mast cells, myeloid cells, and fibroblasts, of which the epithelial cells and B cells showed a marked increase in the tumor samples. In addition, we also detected an intense signal transduction network from the cancer-associated fibroblasts (CAFs) to malignant cells, mainly involving the DCN/MET, COLA1/DDR1, COL1A1/SDC1, and COL1A2/SDC1 pathways. The tumor differentiation trajectory consisted of state 1 and state 2, which were enriched in HIF1A, and state 4. Furthermore, only a few B cells originated from the normal tissue, suggesting significant recruitment and infiltration of B cells in LUAD. Based on differentially upregulated genes in the cells positively and negatively associated with survival, we established a prognostic model that showed satisfactory predictive performance in three different cohorts. States 3 and 2 of epithelial cells included the majority of cells with KRAS mutation, whereas state 2 showed high frequency of EGFR mutations. CONCLUSION: We analyzed intra-tumor heterogeneity of LUAD at the single-cell level and developed a prognostic index that was highly effective across multiple cohorts.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Análise da Expressão Gênica de Célula Única , Células Endoteliais , Variações do Número de Cópias de DNA
8.
Cell Rep ; 42(10): 113204, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804511

RESUMO

Olfactory learning is widely regarded as a substrate for animal survival. The exact brain areas involved in olfactory learning and how they function at various stages during learning remain elusive. Here, we investigate the role of the lateral entorhinal cortex (LEC) and the posterior piriform cortex (PPC), two important olfactory areas, in aversive olfactory learning. We find that the LEC is involved in the acquisition of negative odor value during olfactory fear conditioning, whereas the PPC is involved in the memory-retrieval phase. Furthermore, inhibition of LEC CaMKIIα+ neurons affects fear encoding, fear memory recall, and PPC responses to a conditioned odor. These findings provide direct evidence for the involvement of LEC CaMKIIα+ neurons in negative valence encoding.


Assuntos
Córtex Entorrinal , Olfato , Animais , Córtex Entorrinal/fisiologia , Olfato/fisiologia , Odorantes , Memória/fisiologia , Neurônios/fisiologia
9.
Sci Bull (Beijing) ; 68(17): 1894-1903, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544880

RESUMO

Fe-based polyanionic sulfate materials are one of the most promising candidates for large-scale applications in sodium-ion batteries due to their low cost and excellent electrochemical performance. Although great achievements have been gained on a series of Na6-2xFex(SO4)3 (NFSO-x, 1.5 ≤ x ≤ 2.0) materials such as Na2Fe2(SO4)3, Na2Fe1.5(SO4)3, and Na2.4Fe1.8(SO4)3 for sodium storage, the phase and structure characteristics on these NFSO-x are still controversial, making it difficult to achieve phase-pure materials with optimal electrochemical properties. Herein, six NFSO-x samples with varied x are investigated via both experimental methods and density functional theory calculations to analyze the phase and structure properties. It reveals that a pure phase exists in the 1.6 ≤ x ≤ 1.7 region of the NFSO-x, and part of Na ions tend to occupy Fe sites to form more stable frameworks. The NFSO-1.7 exhibits the best electrochemical performance among the NFSO-x samples, delivering a high discharge capacity (104.5 mAh g-1 at 0.1 C, close to its theoretical capacity of 105 mAh g-1), excellent rate performance (81.5 mAh g-1 at 30 C), and remarkable cycle stability over 10,000 cycles with high-capacity retention of 72.4%. We believe that the results are useful to clarify the phase and structure characteristics of polyanionic materials to promote their application for large-scale energy storage.

10.
Front Public Health ; 11: 1180818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397728

RESUMO

Background: Currently, tuberculous pleurisy (TP) remains a serious problem affecting global public health, including in China. Our purpose was to comprehensively understand and identify the incidence of TP in mainland China between 2005 and 2018. Methods: The data on registered TP cases from 2005 to 2018 were acquired from the National Tuberculosis Information Management System. We analyzed the demographics, epidemiology, and time-space distribution of TP patients. Then, the effects of potentially influential factors on TP incidences, such as medical expenses per capita, GDP per capita, and population density, were assessed using the Spearman correlation coefficient. Results: The incidence of TP increased in mainland China from 2005 to 2018, with a mean incidence of 2.5 per 100,000 population. Interestingly, spring was the peak season for TP, with more notified cases. Tibet, Beijing, Xinjiang, and Inner Mongolia had the highest mean annual incidence. A moderate positive relationship was found between TP incidence, medical expenses per capita, and GDP per capita. Conclusions: The notified incidence of TP had an elevated trend from 2005 to 2018 in mainland China. The findings of this study provide insight into the knowledge of TP epidemiology in the country, which can help optimize resource allocation to reduce the TP burden.


Assuntos
Tuberculose Pleural , Humanos , Tuberculose Pleural/epidemiologia , Incidência , China/epidemiologia , Tibet , Densidade Demográfica
11.
Water Res ; 242: 120309, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451190

RESUMO

Hexavalent chromium (Cr(VI)) is ubiquitous in natural environments, whereas its role in the transformation of coexisting contaminants may have been overlooked. In this work, it was reported for the first time that the irradiation of Cr(VI) by solar light (solar light/Cr(VI) system) could effectively degrade various micropollutants with different structures. The removal efficiency of selected micropollutants was increased by 13.3-64.8% by the solar light/Cr(VI) system compared to that by direct solar photolysis. Meanwhile, the oxidation rates were enhanced by 2.2-21.5 folds, while they were negligible by Cr(VI) oxidation alone. Experiments by specific scavengers, probe compounds, fluorescence absorbance, and electron spin resonance analysis demonstrated that hydroxyl radical (•OH) was the major reactive species in the solar light/Cr(VI) system. Further experiments showed that the generation of •OH was closely related to the intermediate Cr(V) generated from Cr(VI) reduction, and Cr(V) could be re-oxidized back to Cr(VI). Increasing solution pH negatively affected model micropollutant (carbamazepine (CBZ)) degradation by the solar light/Cr(VI) system, mainly due to the decreased quantum yield of •OH at higher pH. Coexisting sulfate ions showed negligible effect on CBZ degradation in the solar light/Cr(VI) system, while the presence of bicarbonate, chloride, and humic acid inhibited CBZ degradation to varying degrees, owing to their diverse scavenging effects on •OH. Furthermore, moderate CBZ degradation was also achieved by natural solar light photolysis of Cr(VI). This study demonstrated the pivotal role of Cr(VI) in the transformation of micropollutants under solar irradiation, which advances the understanding of the fate of micropollutants in natural environments.


Assuntos
Energia Solar , Luz Solar , Cromo/química , Oxirredução
12.
Water Res ; 241: 120091, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262947

RESUMO

The widespread occurrence of p-arsanilic acid (p-ASA) in natural environments poses big threats to the biosphere due to the generation of toxic inorganic arsenic (i.e., As(III) and As(V), especially As(III) with higher toxicity and mobility). Oxidation of p-ASA or As(III) to As(V) followed by precipitation of total arsenic using Fe-based advanced oxidation processes demonstrated to be a promising approach for the treatment of arsenic contamination. This study for the first time investigated the efficiency and inherent mechanism of p-ASA and As(III) oxidation by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. p-ASA was rapidly degraded by the Fe(II)/PAA process within 20 s at neutral to acidic pHs under different conditions, while it was insignificantly degraded by PAA oxidation alone. Lines of evidence suggested that hydroxyl radicals and organic radicals generated from the homolytic OO bond cleavage of PAA contributed to the degradation of p-ASA in the Fe(II)/PAA process. p-ASA was mainly oxidized to As (V), NH4+, and p-aminophenol by the Fe(II)/PAA process, wherein the aniline group and its para position were the most vulnerable sites. As(III) of concern was likely generated as an intermediate during p-ASA oxidation and it could be readily oxidized to As(V) by the Fe(II)/PAA process as well as PAA alone. The in-depth investigation demonstrated that PAA alone was effective in the oxidation of As(III) under varied conditions with a stoichiometric molar ratio of 1:1. Efficient removal (> 80%) of total arsenic during p-ASA oxidation by Fe(II)/PAA process or during As(III) oxidation by PAA process with additional Fe(III) in synthetic or real waters were observed, mainly due to the adsorptive interactions of amorphous ferric (oxy)hydroxide precipitates. This study systematically investigates the oxidation of p-ASA and As(III) by the Fe(II)/PAA and PAA processes, which is instructive for the future development of arsenic remediation technology.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água , Compostos Férricos/química , Arsênio/química , Ácido Arsanílico/química , Ácido Peracético , Oxirredução , Compostos Ferrosos , Peróxido de Hidrogênio
13.
Chemosphere ; 336: 139221, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327822

RESUMO

Biofilm-based biological nitrification is widely used for ammonia removal, while hasn't been explored for ammonia analysis. The stumbling block is the coexist of nitrifying and heterotrophic microbes in real environment resulting in non-specific sensing. Herein, an exclusive ammonia sensing nitrifying biofilm was screened from natural bioresource, and a bioreaction-detection system for the on-line analysis of environmental ammonia based on biological nitrification was reported. The nitrifying microbes were aggregated into a nitrifying biofilm through a result-oriented bioresource enrichment strategy. The predominant nitrifying population and progressive surface reaction in the plug flow bioreactor led to the exclusive and exhaustive ammonia biodegradation for the establishment of a novel analytical method. The on-line ammonia monitoring prototype achieved complete biodegradation for determining ammonium nitrogen within 5 min and showed exceptional reliability in long-term real sample measurements without frequent calibration. This work offers a low-threshold natural screening paradigm for developing sustainable bioresource-based analytical technologies.


Assuntos
Amônia , Nitrificação , Amônia/metabolismo , Reprodutibilidade dos Testes , Reatores Biológicos , Biofilmes
14.
J Physiol ; 601(16): 3557-3584, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37384845

RESUMO

Although the piriform cortex (PC) has been previously implicated as a critical node for seizure generation and propagation, the underlying neural mechanism has remained unclear. Here, we found increased excitability in PC neurons during amygdala kindling acquisition. Optogenetic or chemogenetic activation of PC pyramidal neurons promoted kindling progression, whereas inhibition of these neurons retarded seizure activities induced by electrical kindling in the amygdala. Furthermore, chemogenetic inhibition of PC pyramidal neurons alleviated the severity of kainic acid-induced acute seizures. These results demonstrate that PC pyramidal neurons bidirectionally modulate seizures in temporal lobe epilepsy, providing evidence for the efficacy of PC pyramidal neurons as a potential therapeutic target for epileptogenesis. KEY POINTS: While the piriform cortex (PC) is an important olfactory centre critically involved in olfactory processing and plays a crucial role in epilepsy due to its close connection with the limbic system, how the PC regulates epileptogenesis is largely unknown. In this study, we evaluated the neuronal activity and the role of pyramidal neurons in the PC in the mouse amygdala kindling model of epilepsy. PC pyramidal neurons are hyperexcited during epileptogenesis. Optogenetic and chemogenetic activation of PC pyramidal neurons significantly promoted seizures in the amygdala kindling model, whereas selective inhibition of these neurons produced an anti-epileptic effect for both electrical kindling and kainic acid-induced acute seizures. The results of the present study indicate that PC pyramidal neurons bidirectionally modulate seizure activity.


Assuntos
Epilepsia , Córtex Piriforme , Camundongos , Animais , Ácido Caínico/farmacologia , Convulsões/induzido quimicamente , Neurônios , Modelos Animais de Doenças
15.
Talanta ; 261: 124671, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201342

RESUMO

Biochemical oxygen demand (BOD) is a water quality parameter of vital importance. Rapid BOD analysis methods have emerged to simplify the five-day BOD (BOD5) measurement protocol. However, their universal implementations are restricted by the tricky environmental matrix (including environmental microbes, contaminants, ionic compositions, etc.). Here, an in situ and self-adaptive BOD bioreaction sensing system consisting of a "gut-like" microfluidic coil bioreactor with self-renewed biofilm was proposed for the establishment of a rapid, resilient and reliable BOD determination method. With the spontaneous surface adhesion of environmental microbial populations, the biofilm was colonized in situ on the inner surface of the microfluidic coil bioreactor. Exploiting the environmental domestication during every real sample measurement, the biofilm was capable of self-renewal to adapt to the environmental changes and exhibited representative biodegradation behaviors. The aggregated abundant, adequate and adapted microbial populations in the BOD bioreactor rendered a total organic carbon (TOC) removal rate of 67.7% within a short hydraulic retention time of 99 s. As validated by an online BOD prototype, exceptional analytical performance was achieved in terms of reproducibility (relative standard deviation of 3.7%), survivability (inhibition by pH and metal ion interference of <20%) and accuracy (relative error of -5.9% to 9.7%). This work rediscovered the interactive effects of the environmental matrix on BOD assays and demonstrated an instructive attempt by making use of the environment to develop practical online BOD monitoring devices for water quality assessments.


Assuntos
Técnicas Biossensoriais , Oxigênio , Reprodutibilidade dos Testes , Biofilmes , Análise da Demanda Biológica de Oxigênio , Qualidade da Água , Técnicas Biossensoriais/métodos
16.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982442

RESUMO

Osteoarthritis (OA), the most common chronic inflammatory joint disease, is characterized by progressive cartilage degeneration, subchondral bone sclerosis, synovitis, and osteophyte formation. Metformin, a hypoglycemic agent used in the treatment of type 2 diabetes, has been evidenced to have anti-inflammatory properties to treat OA. It hampers the M1 polarization of synovial sublining macrophages, which promotes synovitis and exacerbates OA, thus lessening cartilage loss. In this study, metformin prevented the pro-inflammatory cytokines secreted by M1 macrophages, suppressed the inflammatory response of chondrocytes cultured with conditional medium (CM) from M1 macrophages, and mitigated the migration of M1 macrophages induced by interleukin-1ß (IL-1ß)-treated chondrocytes in vitro. In the meantime, metformin reduced the invasion of M1 macrophages in synovial regions brought about by the destabilization of medial meniscus (DMM) surgery in mice, and alleviated cartilage degeneration. Mechanistically, metformin regulated PI3K/AKT and downstream pathways in M1 macrophages. Overall, we demonstrated the therapeutic potential of metformin targeting synovial M1 macrophages in OA.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoartrite , Sinovite , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Macrófagos/metabolismo , Condrócitos/metabolismo , Sinovite/tratamento farmacológico , Sinovite/metabolismo
17.
Genes Genomics ; 45(4): 437-450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36694039

RESUMO

BACKGROUND: Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. OBJECTIVE: To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. METHODS: Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. RESULTS: Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. CONCLUSIONS: This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.


Assuntos
Lonicera , Lonicera/genética , Lonicera/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Etilenos/metabolismo
18.
Int J Biol Markers ; 38(1): 15-24, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36448239

RESUMO

This study aims to explore the expression of matrix metalloproteinase-9 (MMP-9) associated with both diagnostic and prognostic value in ovarian cancer by meta-analysis and bioinformatics analyses. We investigated the prognostic value of MMP-9 expression in ovarian cancer based on The Cancer Genome Atlas. Five databases were used to collect records about MMP-9 expression related to diagnostic and prognostic values in ovarian cancer from inception to June 2022. Using Stata 15.0 software, hazard ratio (HR) and odds ratio (OR) were calculated as the effect index of prognosis. We chose the pooled sensitivity, specificity, and area under the curve (AUC) to judge the diagnostic utility of MMP-9 for ovarian cancer. A total of 23 studies on prognosis, and five studies on diagnosis were entered into the meta-analysis. These suggest that high MMP-9 expression was detrimental to the overall survival of patients with ovarian cancer (HR = 1.34; 95% confidence interval (CI) 1.08∼1.66; P<0.01). High MMP-9 expression increased the risk of tumor stage (OR = 3.66; 95% CI 1.89∼7.07), but was not related to the tumor grade of ovarian cancer (P>0.05). The pooled analysis of serum MMP-9 diagnosing for ovarian cancer gave the pooled sensitivity, specificity, and AUC the values of 0.72 (95% CI 0.61∼0.81), 0.81 (95% CI 0.77∼0.85), and 0.84 (95% CI 0.81∼0.87), respectively. High MMP-9 expression can increase the tumor stage, and a correlation exists between high MMP-9 expression and poor prognosis in patients with ovarian cancer. Also, serum MMP-9 has a good diagnostic value for ovarian cancer.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Metaloproteinase 9 da Matriz/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Modelos de Riscos Proporcionais , Biologia Computacional , Biomarcadores Tumorais/genética
19.
J Colloid Interface Sci ; 634: 737-746, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563430

RESUMO

Developing advanced electrode materials with appropriate compositions and exquisite configurations is crucial in fabricating lithium-ion batteries (LIBs) with high energy density and fast charging capability plateau. Herein, a Fe3O4@reduced graphene oxide (Fe3O4@rGO) coupled architecture was rationally designed and in-situ synthesized. Monodispersed mesoporous Fe3O4 nanospheres were homogeneously formed and strongly bound on interconnected macroporous rGO frameworks to form well-defined three-dimensional (3D) hierarchical porous morphologies. This tailored Fe3O4@rGO coupled architecture fully exploited the advantages of Fe3O4 and rGO to overcome their inherent challenges, including spontaneous aggregating/excessive restacking tendency, sluggish ions diffusion/electrons transportation, and severe volume expansion/structural collapse. Benefitting from their synergistic effects, the optimized Fe3O4@rGO composite electrode exhibited an improved electrochemical reactivity, electrical conductivity, electrolyte accessibility, and structural stability. The optimized composite electrode displayed a high specific capacity of 1296.8 mA h g-1 at 0.1 A g-1 after 100 cycles, even retaining 555.1 mA h g-1 at 2 A g-1 after 2000 cycles. The electrochemical kinetics analysis revealed the predominantly pseudocapacitive behaviors of the Fe3O4@rGO heterogeneous interfaces, accounting for the excellent electrode performance. This study proposes a viable strategy for use in engineering hybrid composites with coupled architectures to optimize their potential as high-performance electrode materials for use in LIBs.

20.
J Colloid Interface Sci ; 635: 186-196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36586144

RESUMO

Exploring efficient noble-metal-free electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the development of rechargeable Zn-air batteries. Herein, a self-limiting method using an agarose gel was proposed to prepare bimetallic (iron and cobalt) nitrogen-doped carbon composites (FeCo-NC). The resulting FeCo-NC catalyst has a high surface area and a hierarchical porous structure. The optimized FeCo-NC electrocatalyst exhibits a small potential difference (ΔE) = 0.72 V between the ORR half-wave potential and the OER potential at a current density of 10 mA cm-2 in alkaline media. Impressively, the FeCo-NC Zn-air battery exhibits a high open-circuit voltage, large power density, and outstanding charge-discharge cycling stability. This study provides an effective means of designing electrocatalysts and energy conversion systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA