Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nat Commun ; 15(1): 2627, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521787

RESUMO

IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1ß inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Fibrose , Inflamação , Leucócitos Mononucleares/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Emerg Microbes Infect ; 13(1): 2287118, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990907

RESUMO

This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Reações Cruzadas , Vacinação
4.
Nat Commun ; 14(1): 7922, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040679

RESUMO

Invariant natural killer T (NKT) cell subsets are defined based on their cytokine-production profiles and transcription factors. Their distribution is different in C57BL/6 (B6) and BALB/c mice, with a bias for NKT1 and NKT2/NKT17 subsets, respectively. Here, we show that the non-classical class I-like major histocompatibility complex CD1 molecules CD1d2, expressed in BALB/c and not in B6 mice, could not account for this difference. We find however that NKT cell subset distribution is intrinsic to bone marrow derived NKT cells, regardless of syngeneic CD1d-ligand recognition, and that multiple intrinsic factors are likely involved. Finally, we find that CD1d expression levels in combination with T cell antigen receptor signal strength could also influence NKT cell distribution and function. Overall, this study indicates that CD1d-mediated TCR signals and other intrinsic signals integrate to influence strain-specific NKT cell differentiation programs and subset distributions.


Assuntos
Células T Matadoras Naturais , Animais , Camundongos , Antígenos CD1/metabolismo , Antígenos CD1d/metabolismo , Diferenciação Celular , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T
5.
J Med Virol ; 95(12): e29270, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047459

RESUMO

Coronavirus disease 2019 (COVID-19) pathogenesis is influenced by reactive oxygen species (ROS). Nevertheless, the precise mechanisms implicated remain poorly understood. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main driver for this condition, is a structural protein indispensable for viral replication and assembly, and its role in ROS production has not been reported. This study shows that SARS-CoV-2 N protein expression enhances mitochondrial ROS level. Bulk RNA-sequencing suggests of aberrant redox state of the electron transport chain. Accordingly, this protein hinders ATP production but simultaneously augments the activity of complexes I and III, and most mitochondrially encoded complex I and III proteins are upregulated by it. Mechanistically, N protein of SARS-CoV-2 shows significant mitochondrial localization. It interacts with mitochondrial transcription components and stabilizes them. Moreover, it also impairs the activity of antioxidant enzymes with or without detectable interaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Espécies Reativas de Oxigênio , Proteínas do Nucleocapsídeo/química , Replicação Viral
6.
MedComm (2020) ; 4(5): e379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37789963

RESUMO

To increase the imaging resolution and detection capability, the field strength of static magnetic fields (SMFs) in magnetic resonance imaging (MRI) has significantly increased in the past few decades. However, research on the side effects of high magnetic field is still very inadequate and the effects of SMF above 1 T (Tesla) on B cells have never been reported. Here, we show that 33.0 T ultra-high SMF exposure causes immunosuppression and disrupts B cell differentiation and signaling. 33.0 T SMF treatment resulted in disturbance of B cell peripheral differentiation and antibody secretion and reduced the expression of IgM on B cell membrane, and these might be intensity dependent. In addition, mice exposed to 33.0 T SMF showed inhibition on early activation of B cells, including B cell spreading, B cell receptor clustering and signalosome recruitment, and depression of both positive and negative molecules in the proximal BCR signaling, as well as impaired actin reorganization. Sequencing and gene enrichment analysis showed that SMF stimulation also affects splenic B cells' transcriptome and metabolic pathways. Therefore, in the clinical application of MRI, we should consider the influence of SMF on the immune system and choose the optimal intensity for treatment.

7.
iScience ; 26(8): 107341, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539041

RESUMO

Metabolism plays a crucial role in B cell differentiation and function. GSDMA3 is related to mitochondrial metabolism and is involved in immune responses. Here, we used Gsdma3 KO mice to examine the effect of GSDMA3 on B cells. The results demonstrated that GSDMA3 deficiency reprogrammed B cell metabolism, evidenced by upregulating PI3K-Akt-mTOR signaling, along with elevated ROS reproduction and reduced maximal oxygen consumption rate in mitochondria. Moreover, the BCR signaling in the KO B cells was impaired. The reduced BCR signaling was associated with decreased BCR clustering, caused by inhibited activation of WASP. However, GSDMA3 deficiency had no effects on B cell development and functions in humoral immunity, which might be associated with the compensation of upregulated GSDMA2 expression and the fine balance between PI3K signaling and BCR signals interaction. Our observations reveal a previously unknown influence of GSDMA3 on B cells under physiological and immunized states.

8.
Front Oncol ; 13: 1208531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519817

RESUMO

Purpose: Neuroblastoma is a solid malignant tumor with high malignancy and high risk for metastasis. The prognosis of neuroblastoma ranges from spontaneous regression to insensitivity to therapies and widespread metastasis. There is a non-invasive, panoramic imaging technique called 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT), which can provide both complete anatomical information via CT and extent of FDG uptake value in tumors via positron emission detection. PET/CT is a powerful approach to estimating tumoral metabolic activities, and PET/CT parameters have been demonstrated to be associated with the prognosis of various tumors. However, the predictive performance of PET/CT for the prognosis of neuroblastoma remains unclear. This meta-analysis aims to assess the predictive values of maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for progression-free survival (PFS), event-free survival (EFS), and overall survival (OS) in neuroblastoma patients. Methods: Literature in PubMed, Embase, Cochrane Library, and Web of Science from January 1985 to June 2023 was searched for studies evaluating predictive values of PET/CT parameters for the prognosis of neuroblastoma. Search items mainly included "Positron Emission Tomography Computed Tomography" and "Neuroblastoma". Hazard ratio (HR) was used as a pooled statistic to assess the association of SUVmax, MTV, and TLG with PFS, EFS, and OS in neuroblastoma patients. Heterogeneity test and sensitivity analysis were performed. Results: There were eight studies included, with 325 participants. Meta-analysis showed that higher SUVmax was associated with shorter OS [HR = 1.27, 95% CI (1.11, 1.45), p = 0.001], while no association with PFS [HR = 1.03, 95% CI (0.99, 1.07), p = 0.222] and EFS [HR = 2.58, 95% CI (0.37, 18.24), p = 0.341] was presented. MTV showed no association with OS [HR = 2.46, 95% CI (0.34, 18.06), p = 0.376] and PFS [HR = 2.60, 95% CI (0.68, 9.88), p = 0.161]. There was a statistically significant association between TLG and OS [HR = 1.00, 95% CI (1.00, 1.00), p = 0.00], while the HR was 1, so the association could not be concluded, and TLG showed no association with PFS [HR = 1.00, 95% CI (0.99, 1.00), p = 0.974]. Conclusion: High SUVmax indicates poor OS in patients with neuroblastoma. The MTV and TLG are potential prognostic predictors that need to be further validated by more well-designed studies. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier 340729.

9.
Front Immunol ; 14: 1169601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275865

RESUMO

Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Linfócitos T Reguladores , Linfócitos T Auxiliares-Indutores/patologia
10.
Front Immunol ; 14: 1146628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283744

RESUMO

Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.


Assuntos
Citocinas , Transdução de Sinais , Proteína Regulatória Associada a mTOR/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Citocinas/metabolismo
11.
Front Plant Sci ; 14: 1099110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890885

RESUMO

Background: Considerable attention has been given to how different aspects of biodiversity sustain ecosystem functions. Herbs are a critical component of the plant community of dryland ecosystems, but the importance of different life form groups of herbs is often overlooked in experiments on biodiversity-ecosystem multifunctionality. Hence, little is known about how the multiple attributes of diversity of different life form groups of herbs affect changes to the multifunctionality of ecosystems. Methods: We investigated geographic patterns of herb diversity and ecosystem multifunctionality along a precipitation gradient of 2100 km in Northwest China, and assessed the taxonomic, phylogenetic and functional attributes of different life form groups of herbs on the multifunctionality. Results: We found that subordinate (richness effect) species of annual herbs and dominant (mass ratio effect) species of perennial herbs were crucial for driving multifunctionality. Most importantly, the multiple attributes (taxonomic, phylogenetic and functional) of herb diversity enhanced the multifunctionality. The functional diversity of herbs provided greater explanatory power than did taxonomic and phylogenetic diversity. In addition, the multiple attribute diversity of perennial herbs contributed more than annual herbs to multifunctionality. Conclusions: Our findings provide insights into previously neglected mechanisms by which the diversity of different life form groups of herbs affect ecosystem multifunctionality. These results provide a comprehensive understanding of the relationship between biodiversity and multifunctionality, and will ultimately contribute to multifunctional conservation and restoration programs in dryland ecosystems.

12.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976645

RESUMO

Although the expression of Mex3 RNA-binding family member B (MEX3B) is upregulated in human nasal epithelial cells (HNECs) predominately in the eosinophilic chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) subtype, its functions as an RNA binding protein in airway epithelial cells remain unknown. Here, we revealed the role of MEX3B based on different subtypes of CRS and demonstrated that MEX3B decreased the TGF-ß receptor III (TGFBR3) mRNA level by binding to its 3' UTR and reducing its stability in HNECs. TGF-ßR3 was found to be a TGF-ß2-specific coreceptor in HNECs. Knocking down or overexpressing MEX3B promoted or inhibited TGF-ß2-induced phosphorylation of SMAD2 in HNECs, respectively. TGF-ßR3 and phosphorylated SMAD2 levels were downregulated in CRSwNP compared with controls and CRS without nasal polyps with a more prominent downregulation in the eosinophilic CRSwNP. TGF-ß2 promoted collagen production in HNECs. Collagen abundance decreased and edema scores increased in CRSwNP compared with control, again more prominently in the eosinophilic type. Collagen expression in eosinophilic CRSwNP was negatively correlated with MEX3B but positively correlated with TGF-ßR3. These results suggest that MEX3B inhibits tissue fibrosis in eosinophilic CRSwNP by downregulating epithelial cell TGFBR3 expression; consequently, MEX3B might be a valuable therapeutic target against eosinophilic CRSwNP.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Rinite/complicações , Rinite/metabolismo , Pólipos Nasais/genética , Pólipos Nasais/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Sinusite/genética , Sinusite/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/genética
13.
Emerg Microbes Infect ; 12(1): 2195019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36946172

RESUMO

The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organs dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Citocinas , Imunidade Inata , Células Dendríticas
14.
Emerg Microbes Infect ; 12(1): e2164219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36583642

RESUMO

ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Proteínas do Nucleocapsídeo , Imunidade Inata , Desenvolvimento de Vacinas
15.
Front Cell Dev Biol ; 10: 991840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211467

RESUMO

B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.

16.
Front Immunol ; 13: 988536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110861

RESUMO

B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Humanos , Contagem de Linfócitos , SARS-CoV-2 , Vacinação
17.
Clin Transl Med ; 12(7): e887, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35875970

RESUMO

BACKGROUND: CCR2 is involved in maintaining immune homeostasis and regulating immune function. This study aims to elucidate the mechanism by which CCR2 regulates B-cell signalling. METHODS: In Ccr2-knockout mice, the development and differentiation of B cells, BCR proximal signals, actin movement and B-cell immune response were determined. Besides, the level of CCR2 in PBMC of SLE patients was analysed by bioinformatics. RESULTS: CCR2 deficiency reduces the proportion and number of follicular B cells, upregulates BCR proximal signalling and enhances the oxidative phosphorylation of B cells. Meanwhile, increased actin filaments aggregation and its associated early-activation events of B cells are also induced by CCR2 deficiency. The MST1/mTORC1/STAT1 axis in B cells is responsible for the regulation of actin remodelling, metabolic activities and transcriptional signalling, specific MST1, mTORC1 or STAT1 inhibitor can rescue the upregulated BCR signalling. Glomerular IgG deposition is obvious in CCR2-deficient mice, accompanied by increased anti-dsDNA IgG level. Additionally, the CCR2 expression in peripheral B cells of SLE patients is decreased than that of healthy controls. CONCLUSIONS: CCR2 can utilise MST1/mTORC1/STAT1 axis to regulate BCR signalling. The interaction between CCR2 and BCR may contribute to exploring the mechanism of autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores de Quimiocinas , Actinas/metabolismo , Animais , Imunoglobulina G/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Quimiocinas/metabolismo , Fator de Transcrição STAT1/metabolismo
18.
Front Immunol ; 13: 841641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663931

RESUMO

Lymphatic vasculature is a network of capillaries and vessels capable of draining extracellular fluid back to blood circulation and to facilitate immune cell migration. Although the role of the lymphatic vasculature as coordinator of fluid homeostasis has been extensively studied, the consequences of abnormal lymphatic vasculature function and impaired lymph drainage have been mostly unexplored. Here, by using the Prox1+/- mice with defective lymphatic vasculature and lymphatic leakage, we provide evidence showing that lymph leakage induces an immunosuppressive environment by promoting anti-inflammatory M2 macrophage polarization in different inflammatory conditions. In fact, by using a mouse model of tail lymphedema where lymphatic vessels are thermal ablated leading to lymph accumulation, an increasing number of anti-inflammatory M2 macrophages are found in the lymphedematous tissue. Moreover, RNA-seq analysis from different human tumors shows that reduced lymphatic signature, a hallmark of lymphatic dysfunction, is associated with increased M2 and reduced M1 macrophage signatures, impacting the survival of the patients. In summary, we show that lymphatic vascular leakage promotes an immunosuppressive environment by enhancing anti-inflammatory macrophage differentiation, with relevance in clinical conditions such as inflammatory bowel diseases or cancer.


Assuntos
Vasos Linfáticos , Linfedema , Anti-Inflamatórios , Humanos , Terapia de Imunossupressão , Macrófagos
19.
Immunology ; 167(2): 181-196, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753034

RESUMO

As a nonreceptor tyrosine kinase, Abelson tyrosine kinase (c-Abl) was first studied in chronic myelogenous leukaemia, and its role in lymphocytes has been well characterised. c-Abl is involved in B-cell development and CD19-associated B-cell antigen receptor (BCR) signalling. Although c-Abl regulates different metabolic pathways, the role of c-Abl is still unknown in B-cell metabolism. In this study, B-cell-specific c-Abl knockout (KO) mice (Mb1Cre+/- c-Ablfl/fl ) were used to investigate how c-Abl regulates B-cell metabolism and BCR signalling. We found that the levels of activation positive BCR signalling proximal molecules, phosphorylated spleen tyrosine kinase (pSYK) and phosphorylated Bruton tyrosine kinase (pBTK), were decreased, while the level of key negative regulator, phosphorylated SH2-containing inositol phosphatase 1 (pSHIP1), was increased in Mb1Cre+/- c-Ablfl/fl mice. Furthermore, we found c-Abl deficiency weakened the B-cell spreading, formation of BCR signalosomes, and the polymerisation of actin during BCR activation, and also impaired the differentiation of germinal center (GC) B-cells both in quiescent condition and after immunisation. Moreover, B-cell mitochondrial respiration and the expression of B-cell metabolism-regulating molecules were downregulated in c-Abl deficiency mice. Overall, c-Abl, which involved in actin remodelling and B-cell metabolism, positively regulates BCR signalling and promotes GC differentiation.


Assuntos
Actinas , Linfócitos B , Proteínas de Fusão bcr-abl , Actinas/metabolismo , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Proteínas de Fusão bcr-abl/metabolismo , Camundongos , Fosforilação , Receptores de Antígenos de Linfócitos B/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo
20.
Front Immunol ; 13: 842605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493485

RESUMO

Antigen (Ag)-triggered B-cell receptor (BCR) signaling initiates antibody responses. However, prolonged or uncontrolled BCR signaling is associated with the development of self-reactive B-cells and autoimmune diseases. We previously showed that actin-mediated B-cell contraction on Ag-presenting surfaces negatively regulates BCR signaling. Non-muscle myosin II (NMII), an actin motor, is involved in B-cell development and antibody responses by mediating B-cell migration, cytokinesis, and Ag extraction from Ag-presenting cells. However, whether and how NMII regulates humoral responses through BCR signaling remains elusive. Utilizing a B-cell-specific, partial NMIIA knockout (cIIAKO) mouse model and NMII inhibitors, this study examined the role of NMII in BCR signaling. Upon BCR binding to antibody-coated planar lipid bilayers (PLB), NMIIA was recruited to the B-cell contact membrane and formed a ring-like structure during B-cell contraction. NMII recruitment depended on phosphatidylinositol 5-phosphatase (SHIP1), an inhibitory signaling molecule. NMII inhibition by cIIAKO did not affect B-cell spreading on PLB but delayed B-cell contraction and altered BCR clustering. Surface BCR "cap" formation induced by soluble stimulation was enhanced in cIIAKO B-cells. Notably, NMII inhibition by cIIAKO and inhibitors up-regulated BCR signaling in response to both surface-associated and soluble stimulation, increasing phosphorylated tyrosine, CD79a, BLNK, and Erk and decreasing phosphorylated SHIP1. While cIIAKO did not affect B-cell development, the number of germinal center B-cells was significantly increased in unimmunized cIIAKO mice, compared to control mice. While cIIAKO mice mounted similar antibody responses when compared to control mice upon immunization, the percentages of high-affinity antibodies, Ag-specific germinal center B-cells and isotype switched B-cells were significantly lower in cIIAKO mice than in control mice. Furthermore, autoantibody levels were elevated in cIIAKO mice, compared to control mice. Collectively, our results reveal that NMII exerts a B-cell-intrinsic inhibition on BCR signaling by regulating B-cell membrane contraction and surface BCR clustering, which curtails the activation of non-specific and self-reactive B-cells.


Assuntos
Actinas , Receptores de Antígenos de Linfócitos B , Actinas/metabolismo , Animais , Antígenos/metabolismo , Linfócitos B , Ativação Linfocitária , Camundongos , Miosina Tipo II/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA