Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241281326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233627

RESUMO

PURPOSE: Hippocampal-avoidance whole-brain radiotherapy (HA-WBRT) planning can present challenges. This study examines the influence of head tilt angles on the dosimetric characteristics of target and organs at risk (OARs), aiming to identify the optimal tilt angle that yields optimal dosimetric outcomes using tomotherapy (TOMO). METHODS: Eight patients diagnosed with brain metastases underwent CT scans at five tilt angles: [0°, 10°), [10°, 20°), [20°, 30°), [30°, 40°), and [40°, 45°]. Treatment plans were generated using TOMO and volumetric modulated arc therapy (VMAT). Dosimetric parameters including conformity index (CI), homogeneity index (HI), D2cc, D98%, and Dmean of PTV, as well as Dmax, and Dmean of OARs were analyzed. Furthermore, a comparison was made between the dosimetric parameters of TOMO and VMAT plans. Finally, delivery efficiency of TOMO plans were assessed. RESULTS: For the PTV, [40°, 45°] tilt angle demonstrated significantly better conformity, homogeneity, lower D2cc, and lower Dmean for the PTV. Regarding the OARs, the [40°, 45°] head tilt angle demonstrated significantly lower Dmax and Dmean in hippocampus, eyes, optic chiasm, and optic nerves. The [40°, 45°] tilt angle also showed significantly lower Dmax for brainstem and cochleas, as well as a lower Dmean for lens. In the [40°,45°] tilt angle for HA-WBRT, TOMO showed superior performance over VMAT for the PTV. TOMO achieved lower Dmax for brainstem, cochleas, optic nerves, and optic chiasm, as well as a lower Dmean for hippocampus. Furthermore, a significant correlation was found between delivery time and the PTV projection length in the sagittal plane. CONCLUSION: The TOMO plan utilizing a tilt angle range of [40°, 45°] demonstrated superior PTV conformity and uniformity, along with enhanced OARs sparing. Furthermore, it exhibited a dosimetric advantage over VMAT for PTV and most OARs at the same angle range.


Assuntos
Neoplasias Encefálicas , Irradiação Craniana , Hipocampo , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Hipocampo/efeitos da radiação , Hipocampo/diagnóstico por imagem , Irradiação Craniana/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Radiometria , Idoso
2.
Front Oncol ; 14: 1415471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993636

RESUMO

Purpose: In the field of radiation therapy for brain metastases, whole-brain hippocampus-avoidance treatment is commonly employed. this study aims to examine the impact of different head tilt angles on the dose distribution in the whole-brain target area and organs at risk. It also aims to determine the head tilt angle to achieve optimal radiation therapy outcomes. Methods: CT images were collected from 8 brain metastases patients at 5 different groups of head tilt angle. The treatment plans were designed using the volumetric modulated arc therapy (VMAT) technique. The 5 groups of tilt angle were as follows: [0°,10°), [10°,20°), [20°,30°), [30°,40°), and [40°,45°]. The analysis involved assessing parameters such as the uniformity index, conformity index, average dose delivered to the target, dose coverage of the target, hot spots within the target area, maximum dose, and average dose received by organs at risk. Additionally, the study evaluated the correlation between hippocampal dose and other factors, and established linear regression models. Results: Significant differences in dosimetric results were observed between the [40°,45°] and [0°,10°) head tilt angles. The [40°,45°] angle showed significant differences compared to the [0°,10°) angle in the average dose in the target area (31.49 ± 0.29 Gy vs. 31.99 ± 0.29 Gy, p=0.016), dose uniformity (1.20 ± 0.03 vs. 1.24 ± 0.03, p=0.016), hotspots in the target area (33.64 ± 0.35 Gy vs. 34.42 ± 0.49 Gy, p=0.016), maximum hippocampal dose (10.73 ± 0.36 Gy vs. 11.66 ± 0.59 Gy, p=0.008), maximum dose in the lens (2.82 ± 1.10 Gy vs. 4.99 ± 0.16 Gy, p=0.016), and average dose in the lens (1.93 ± 0.29 Gy vs. 4.22 ± 0.26 Gy, p=0.008). There is a moderate correlation between the maximum dose in the hippocampi and the PTV length (r=0.49, p=0.001). Likewise, the mean dose in the hippocampi is significantly correlated with the hippocampi length (r=0.34, p=0.04). Conclusion: The VMAT plan with a head tilt angle of [40°,45°] met all dose constraints and demonstrated improved uniformity of the target area while reducing the dose to organs at risk. Furthermore, the linear regression models suggest that increasing the head tilt angle within the current range of [0°,45°] is likely to lead to a decrease in the average hippocampal dose.

3.
Small Methods ; : e2400505, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030815

RESUMO

Expansion microscopy (ExM) facilitates nanoscale imaging under conventional microscopes, but it frequently encounters challenges such as fluorescence losses, low signal-to-noise ratio (SNR), and limited detection throughput. To address these issues, a method of orthogonal DNA self-assembly-based ExM (o-DAExM) platform is developed, which employs hybridization chain reaction instead of conventional fluorescence labeling units, showcasing signal amplification efficacy, enhancement of SNR, and expandable multiplexing capability at any stage of the ExM process. In this work, o-DAExM has been applied to compare with immunofluorescence-based ExM for cellular cytoskeleton imaging, and the resolved nanoscale spatial distributions of cytoskeleton show outstanding performance and reliability of o-DAExM. Furthermore, the study demonstrates the utility of o-DAExM in accurately revealing exosome heterogeneous information and multiplexed analysis of protein targets in single cells, which provides infinite possibilities in super-resolution imaging of cells and other samples. Therefore, o-DAExM offers a straightforward expansion and signal labeling method, highlighting future prospects to study nanoscale structures and functional networks in biological systems.

4.
Adv Sci (Weinh) ; 11(31): e2402140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884120

RESUMO

Accurate and efficient molecular recognition plays a crucial role in the fields of molecular detection and diagnostics. Conventional trial-and-error-based molecular recognition approaches have always been challenged in distinguishing minimal differences between targets and non-targets, such as single nucleotide polymorphisms (SNPs) of oligonucleotides. To address these challenges, here, a novel concept of dynamic addressing analysis is proposed. In this concept, by dissecting the regions of the target and creating a corresponding recognizer, it is possible to eliminate the inaccuracy and inefficiency of recognition. To achieve this concept, a Dynamic Addressing Molecular Robot (DAMR), a DNA-based dynamic addressing device is developed which is capable of dynamically locating targets. DAMR is designed to first bind to the conserved region of the target while addressing the specific region dynamically until accurate recognition is achieved. DAMR has provided an approach for analyzing low-resolution targets and has been used for analyzing SNP of miR-196a2 in both cell and serum samples, which has opened new avenues for effective and efficient molecular recognition.


Assuntos
Polimorfismo de Nucleotídeo Único , Robótica , Polimorfismo de Nucleotídeo Único/genética , Robótica/métodos , Humanos , MicroRNAs/genética , DNA/genética
5.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859621

RESUMO

Color encoding plays a crucial role in painting, digital photography, and spectral analysis. Achieving accurate, target-responsive color encoding at the molecular level has the potential to revolutionize scientific research and technological innovation, but significant challenges persist. Here, we propose a multibit DNA self-assembly system based on computer-aided design (CAD) technology, enabling accurate, target-responsive, amplified color encoding at the molecular level, termed fluorescence encoding (FLUCO). As a model, we establish a quaternary FLUCO system using four-bit DNA self-assembly, which can accurately encode 51 colors, presenting immense potential in applications such as spatial proteomic imaging and multitarget analysis. Notably, FLUCO enables the simultaneous imaging of multiple targets exceeding the limitations of channels using conventional imaging equipment, and marks the integration of computer science for molecular encoding and decoding. Overall, our work paves the way for target-responsive, controllable molecular encoding, facilitating spatial omics analysis, exfoliated cell analysis, and high-throughput liquid biopsy.

6.
Mikrochim Acta ; 191(5): 248, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587676

RESUMO

Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation. Rolling circle amplification (RCA) is an efficient DNA amplification technique with amplification factors as high as 105. Therefore, the above two excellent techniques can be employed for highly accurate imaging analysis of tumor cells. Herein, we developed a novel nanoplatform for TAA-specific cell imaging based on UCL and RCA technology. An aptamer-primer complex selectively binds to Mucin 1 (MUC1), one of TAA on cell surface, to trigger RCA reaction, generating a large number of repetitive sequences. These sequences provide lots of binding sites for complementary signal probes, producing UCL from lanthanide-doped upconversion nanoparticles (UCNPs) after releasing quencher group. The experimental results demonstrate the specific attachment of upconversion nanomaterials to cancer cells which express a high level of MUC1, indicating the potential of UCNPs and RCA in tumor imaging.


Assuntos
Luminescência , Ácidos Nucleicos , Diagnóstico por Imagem , Membrana Celular , Técnicas de Amplificação de Ácido Nucleico
7.
Eur Radiol ; 34(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37566265

RESUMO

OBJECTIVES: To investigate measurements derived from plain and enhanced spectral CT in differentiating osteoblastic bone metastasis (OBM) from bone island (BI). MATERIALS AND METHODS: From January to November 2020, 73 newly diagnosed cancer patients with 201 bone lesions (OBM = 92, BI = 109) having received spectral CT were retrospectively enrolled. Measurements including CT values of 40-140 keV, slope of the spectral curve, effective atomic number (Zeff), water (calcium) density, calcium (water) density, and Iodine (calcium) density were derived from manually segmented lesions on plain and enhanced spectral CT, and then analyzed using Student t-test and Pearson's correlation. Multivariate analysis was performed to build models (plain spectral model, enhanced spectral CT model, and combined model) for the discrimination of OBM and BI with performance evaluated using receiver operator characteristics curve and DeLong test. RESULTS: All features were significantly different between the BI group and OBM group (all p < 0.05), highly correlated with the corresponding features between plain and enhanced spectral CT both in OBM (r: 0.392-0.763) and BI (r: 0.430-0.544). As for the model performance, the combined model achieved the best performance (AUC = 0.925, 95% CI: 0.879 to 0.957), which significantly outperformed the plain spectral CT model (AUC = 0.815, 95% CI: 0.754 to 0.866, p < 0.001) and enhanced spectral CT model (AUC = 0.901, 95% CI: 0.852 to 0.939, p = 0.024) in differentiating OBM and BI. CONCLUSION: In addition to plain spectral CT measurements, enhanced spectral CT measurements would further significantly benefit the differential diagnosis. CLINICAL RELEVANCE STATEMENT: Measurements derived either from plain or enhanced spectral CT could provide additional valuable information to improve the differential diagnosis between OBM and BI in newly diagnosed cancer patients. KEY POINTS: • We intend to investigate plain and enhanced spectral CT measurements in differentiating OBM from BI. • Both plain and enhanced spectral CT help in discriminating OBM and BI in newly diagnosed cancer patients. • Enhanced spectral CT measurements further improve plain spectral CT measurements-based differential diagnosis.


Assuntos
Neoplasias Ósseas , Cálcio , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Neoplasias Ósseas/diagnóstico por imagem , Água
8.
Biosens Bioelectron ; 237: 115502, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423067

RESUMO

Conventional pathogen detection strategies based on the molecular structure or chemical characteristics of biomarkers can only provide the "physical abundance" of microorganisms, but cannot reflect the "biological effect abundance" in the true sense. To address this issue, we report an erythrocyte membrane-encapsulated biomimetic sensor cascaded with CRISPR-Cas12a (EMSCC). Taking hemolytic pathogens as the target model, we first constructed an erythrocyte membrane-encapsulated biomimetic sensor (EMS). Only hemolytic pathogens with biological effects can disrupt the erythrocyte membrane (EM), resulting in signal generation. Then the signal was amplified by cascading CRISPR-Cas12a, and more than 6.67 × 104-fold improvement in detection sensitivity compared to traditional erythrocyte hemolysis assay was achieved. Notably, compared with polymerase chain reaction (PCR) or enzyme linked immunosorbent assay (ELISA)-based quantification methods, EMSCC can sensitively respond to the pathogenicity change of pathogens. For the detection of simulated clinical samples based on EMSCC, we obtained an accuracy of 95% in 40 samples, demonstrating its potential clinical value.


Assuntos
Biomimética , Técnicas Biossensoriais , Humanos , Hemólise , Bioensaio , Ensaio de Imunoadsorção Enzimática , Sistemas CRISPR-Cas
9.
Nat Commun ; 14(1): 2440, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117228

RESUMO

Artificial molecular machines have captured the imagination of researchers, given their clear potential to mimic and influence human life. Key to behavior simulation is to reproduce the specific properties of physical or abstract systems. Dice throwing, as a stochastic model, is commonly used for result judgment or plan decision in real life. In this perspective we utilize DNA cube framework for the design of a dice device at the nanoscale to reproduce probabilistic events in different situations: equal probability, high probability, and low probability. We first discuss the randomness of DNA cube, or dice, adsorbing on graphene oxide, or table, and then explore a series of events that change the probability through the way in which the energy released from entropy-driven strand displacement reactions or changes in intermolecular forces. As such, the DNA nano-dice system provides guideline and possibilities for the design, engineering, and quantification of behavioral probability simulation, a currently emerging area of molecular simulation research.


Assuntos
DNA , Julgamento , Humanos , Probabilidade , Simulação por Computador , Imaginação
10.
Nat Commun ; 14(1): 1307, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36894556

RESUMO

mRNA delivery has shown high application value in the treatment of various diseases, but its effective delivery is still a major challenge at present. Herein, we propose a lantern-shaped flexible RNA origami for mRNA delivery. The origami is composed of a target mRNA scaffold and only two customized RGD-modified circular RNA staples, which can compress the mRNA into nanoscale and facilitate its endocytosis by cells. In parallel, the flexible structure of the lantern-shaped origami allows large regions of the mRNA to be exposed and translated, exhibiting a good balance between endocytosis and translation efficiency. The application of lantern-shaped flexible RNA origami in the context of the tumor suppressor gene, Smad4 in colorectal cancer models demonstrates promising potential for accurate manipulation of protein levels in in vitro and in vivo settings. This flexible origami strategy provides a competitive delivery method for mRNA-based therapies.


Assuntos
Neoplasias Colorretais , RNA , Humanos , RNA Mensageiro/genética , RNA Circular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo
11.
Int J Radiat Oncol Biol Phys ; 117(1): 252-261, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966847

RESUMO

PURPOSE: The aim of this work was to provide a method to evaluate the yield of DNA double-strand breaks (DSBs) for carbon ions, overcoming the bias in existing methods due to the nonrandom distribution of DSBs. METHODS AND MATERIALS: A previously established biophysical program based on the radiation track structure and a multilevel chromosome model was used to simulate DNA damage induced by x-rays and carbon ions. The fraction of activity retained (FAR) as a function of absorbed dose or particle fluence was obtained by counting the fraction of DNA fragments larger than 6 Mbp. Simulated FAR curves for the 250 kV x-rays and carbon ions at various energies were compared with measurements using constant-field gel electrophoresis. The doses or fluences at the FAR of 0.7 based on linear interpolation were used to estimate the simulation error for the production of DSBs. RESULTS: The relative difference of doses at the FAR of 0.7 between simulation and experiment was -8.5% for the 250 kV x-rays. The relative differences of fluences at the FAR of 0.7 between simulations and experiments were -17.5%, -42.2%, -18.2%, -3.1%, 10.8%, and -14.5% for the 34, 65, 130, 217, 2232, and 3132 MeV carbon ions, respectively. In comparison, the measurement uncertainty was about 20%. Carbon ions produced remarkably more DSBs and DSB clusters per unit dose than x-rays. The yield of DSBs for carbon ions, ranging from 10 to 16 Gbp-1Gy-1, increased with linear energy transfer (LET) but plateaued in the high-LET end. The yield of DSB clusters first increased and then decreased with LET. This pattern was similar to the relative biological effectiveness for cell survival for heavy ions. CONCLUSIONS: The estimated yields of DSBs for carbon ions increased from 10 Gbp-1Gy-1 in the low-LET end to 16 Gbp-1Gy-1 in the high-LET end with 20% uncertainty.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Humanos , Método de Monte Carlo , Íons , Eficiência Biológica Relativa , DNA , Carbono
12.
J Mater Chem B ; 11(3): 546-559, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36542463

RESUMO

Cardiovascular disease (CVD), a type of circulatory system disease related to the lesions of the cardiovascular system, has become one of the main diseases that endanger human health. Currently, the clinical diagnosis of most CVDs relies on a combination of imaging technology and blood biochemical test. However, the existing technologies for diagnosis of CVDs still have limitations in terms of specificity, detection range, and cost. In order to break through the current bottleneck, microfluidic with the advantages of low cost, simple instruments and easy integration, has been developed to play an important role in the early prevention, diagnosis and treatment of CVDs. Here, we have reviewed the recent various applications of microfluidic in the clinical diagnosis and treatment of CVDs, including microfluidic devices for detecting CVD markers, the cardiovascular models based on microfluidic, and the microfluidic used for CVDs drug screening and delivery. In addition, we have briefly looked forward to the prospects and challenges of microfluidics in diagnosis and treatment of CVDs.


Assuntos
Doenças Cardiovasculares , Microfluídica , Humanos , Microfluídica/métodos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Dispositivos Lab-On-A-Chip
13.
Meta Radiol ; 1(3)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38344271

RESUMO

The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.

14.
Radiat Oncol ; 17(1): 185, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384637

RESUMO

BACKGROUND: Monte Carlo simulation is considered as the most accurate method for dose calculation in radiotherapy. PRIMO is a Monte-Carlo program with a user-friendly graphical interface. MATERIAL AND METHOD: A VitalBeam with 6MV and 6MV flattening filter free (FFF), equipped with the 120 Millennium multileaf collimator was simulated by PRIMO. We adjusted initial energy, energy full width at half maximum (FWHM), focal spot FWHM, and beam divergence to match the measurements. The water tank and ion-chamber were used in the measurement. Percentage depth dose (PDD) and off axis ratio (OAR) were evaluated with gamma passing rates (GPRs) implemented in PRIMO. PDDs were matched at different widths of standard square fields. OARs were matched at five depths. Transmission factor and dose leaf gap (DLG) were simulated. DLG was measured by electronic portal imaging device using a sweeping gap method. RESULT: For the criterion of 2%/2 mm, 1%/2 mm and 1%/1 mm, the GPRs of 6MV PDD were 99.33-100%, 99-100%, and 99-100%, respectively; the GPRs of 6MV FFF PDD were 99.33-100%, 98.99-99.66%, and 97.64-98.99%, respectively; the GPRs of 6MV OAR were 96.4-100%, 90.99-100%, and 85.12-98.62%, respectively; the GPRs of 6MV FFF OAR were 95.15-100%, 89.32-100%, and 87.02-99.74%, respectively. The calculated DLG matched well with the measurement (6MV: 1.36 mm vs. 1.41 mm; 6MV FFF: 1.07 mm vs. 1.03 mm, simulation vs measurement). The transmission factors were similar (6MV: 1.25% vs. 1.32%; 6MV FFF: 0.8% vs. 1.12%, simulation vs measurement). CONCLUSION: The calculated PDD, OAR, DLG and transmission factor were all in good agreement with measurements. PRIMO is an independent (with respect to analytical dose calculation algorithm) and accurate Monte Carlo tool.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Algoritmos
15.
Proc Natl Acad Sci U S A ; 119(40): e2206990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161913

RESUMO

Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.


Assuntos
Bactérias , Doenças Transmissíveis , Análise de Célula Única , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/diagnóstico por imagem , Feminino , Humanos , Tamanho da Partícula , Análise de Célula Única/métodos , Esfregaço Vaginal
16.
Nanoscale ; 14(30): 10844-10850, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35838371

RESUMO

Although various nanomaterials have been designed as intracellular delivery tools, the following aspects have become obstacles to limit their development, like a complex and time-consuming synthesis process, as well as relatively limited application areas (i.e. biosensing or cell imaging). Here, we developed a novel nano-delivery system called "nano-sperm" with low cytotoxicity and high biocompatibility. In this system, we used DNA oligonucleotides as a backbone to synthesize a nanostructure with silver nanoclusters in the head and functional fragments in the tail, which is shaped like a sperm, to achieve dual functions of ultrafast delivery and imaging/therapy. As a model, we analyzed the possibility of the "nano-sperm" carrying DNA with different structures for imaging or survivin-asDNA for tumor therapy. Therefore, this work reports a novel bifunctional high-speed delivery vehicle, which successfully fills the gap in the field of tumor therapy using DNA-templated nanoclusters as a delivery vehicle.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , DNA/química , DNA Antissenso , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química
17.
Bioengineering (Basel) ; 9(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447691

RESUMO

PURPOSE: We aim to evaluate the robustness of multi-field IMRT and VMAT plans to target motion for left-sided BC radiotherapy. METHODS: The 7-field hybrid IMRT (7F-H-IMRT) and 2-arc VMAT (2A-VMAT) plans were generated for ten left-sided BC patients. Shifts of 3 mm, 5 mm, and 10 mm in six directions were introduced and the perturbed dose distributions were recalculated. The dose differences (∆D) of the original plan and perturbed plan corresponded to the plan robustness for the structure. RESULTS: Higher ∆D98%, ∆D95%, and ∆Dmean of CTV were observed in 2A-VMAT plans, which induced higher tumor control probability reductions. A higher ∆Dmean of CTV Boost was found in 7F-H-IMRT plans despite lower ∆D98% and ∆D95%. Shifts in the S-I direction exerted the largest effect on CTV and CTV Boost. Regarding OARs, shifts in R, P, and I directions contributed to increasing the received dose. The 2A-VMAT plans performed better dose sparing, but had a higher robustness in a high-dose volume of the left lung and heart. The 2A-VMAT plans decreased the max dose of LAD but exhibited lower robustness. CONCLUSION: The 2A-VMAT plans showed higher sensitivity to position deviation. Shifts in the S-I direction exerted the largest effect for CTV and CTV Boost.

18.
J Cancer ; 13(5): 1410-1417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371309

RESUMO

Background: Circulating exosomal microRNAs (miRNAs) are considered as potentially non-invasive biomarkers for early detection and prognosis of cancers. Due to the lack of highly sensitive and specific molecular markers, a lot of patients with hepatocellular carcinoma are diagnosed in advanced stages. This study aims to explore the expression mode and clinical detection value of serum exosomal miR-34a in HCC, providing new potential targets and theoretical basis for the early diagnosis and prognosis monitoring of hepatocellular carcinoma. Methods: The expression of serum exosomal miR-34a in 60 HCC patients before and after operation and 60 healthy examiners was abstracted and detected by ultracentrifugation and real-time quantitative PCR. Using ROC analysis, Kaplan-Meier survival analysis and Cox regression analysis, the value of serum exosomal miR-34a on diagnosis and prognosis in HCC patients was assessed. Results: The expression level of serum exosomal miR-34a in preoperative patients was reduced significantly comparing with that in healthy examiners and postoperative patients (P<0.01; P<0.05). Moreover, the decrease of serum exosomal miR-34a was correlated significantly with differentiation degree, TNM stage, tumor infiltration depth and lymph node metastasis(P<0.05), but had no statistical differences with gender, age, ALT, AST, viral infection, cirrhosis and tumor size of HCC patients (P>0.05). At the same time, the combination of serum exosomal miR-34a and α-fetoprotein (AFP) showed high capability on diagnosis to distinguish healthy examiners and HCC patients through ROC analysis. The overall survival of patients with lower expression of serum exosomal miR-34a was worse than that of patients with high level expression by Kaplan-Meier survival analysis (P<0.05). Univariate and multivariate Cox regression analysis both showed that serum exosomal miR-34a was independently related to OS. Conclusions: Collectively, serum exosomal miR-34a is significantly down-regulated in HCC patients and might be a novel noninvasive biomarker for diagnosis and prognosis of HCC.

19.
J Appl Clin Med Phys ; 23(3): e13558, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35170838

RESUMO

PURPOSE: The record of daily quality control (QC) items shows machine performance patterns and potentially provides warning messages for preventive actions. This study developed a neural network model that could predict the record and trend of data variations quantitively. METHODS AND MATERIALS: The record of 24 QC items for a radiotherapy machine was investigated in our institute. The QC records were collected daily for 3 years. The stacked long short-term memory (LSTM) model was used to develop the neural network model. A total of 867 records were collected to predict the record for the next 5 days. To compare the stacked LSTM, the autoregressive integrated moving average model (ARIMA) was developed on the same data set. The accuracy of the model was quantified by the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R2 ). To validate the robustness of the model, the record of four QC items was collected for another radiotherapy machine, which was input into the stacked LSTM model without changing any hyperparameters and ARIMA model. RESULTS: The mean MAE, RMSE, and R 2 ${\rm{\;}}{R^2}$ with 24 QC items were 0.013, 0.020, and 0.853 in LSTM, while 0.021, 0.030, and 0.618 in ARIMA, respectively. The results showed that the stacked LSTM outperforms the ARIMA. Moreover, the mean MAE, RMSE, and R 2 ${\rm{\;}}{R^2}$ with four QC items were 0.102, 0.151, and 0.770 in LSTM, while 0.162, 0.375, and 0.550 in ARIMA, respectively. CONCLUSIONS: In this study, the stacked LSTM model can accurately predict the record and trend of QC items. Moreover, the stacked LSTM model is robust when applied to another radiotherapy machine. Predicting future performance record will foresee possible machine failure, allowing early machine maintenance and reducing unscheduled machine downtime.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Previsões , Humanos
20.
Int J Part Ther ; 8(1): 36-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285934

RESUMO

In this review article, we review the 3 important aspects of linear-energy-transfer (LET) in intensity-modulated proton therapy (IMPT) for head and neck (H&N) cancer management. Accurate LET calculation methods are essential for LET-guided plan evaluation and optimization, which can be calculated either by analytical methods or by Monte Carlo (MC) simulations. Recently, some new 3D analytical approaches to calculate LET accurately and efficiently have been proposed. On the other hand, several fast MC codes have also been developed to speed up the MC simulation by simplifying nonessential physics models and/or using the graphics processor unit (GPU)-acceleration approach. Some concepts related to LET are also briefly summarized including (1) dose-weighted versus fluence-weighted LET; (2) restricted versus unrestricted LET; and (3) microdosimetry versus macrodosimetry. LET-guided plan evaluation has been clinically done in some proton centers. Recently, more and more studies using patient outcomes as the biological endpoint have shown a positive correlation between high LET and adverse events sites, indicating the importance of LET-guided plan evaluation in proton clinics. Various LET-guided plan optimization methods have been proposed to generate proton plans to achieve biologically optimized IMPT plans. Different optimization frameworks were used, including 2-step optimization, 1-step optimization, and worst-case robust optimization. They either indirectly or directly optimize the LET distribution in patients while trying to maintain the same dose distribution and plan robustness. It is important to consider the impact of uncertainties in LET-guided optimization (ie, LET-guided robust optimization) in IMPT, since IMPT is sensitive to uncertainties including both the dose and LET distributions. We believe that the advancement of the LET-guided plan evaluation and optimization will help us exploit the unique biological characteristics of proton beams to improve the therapeutic ratio of IMPT to treat H&N and other cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA