Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Int J Biol Macromol ; : 132764, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821309

RESUMO

There is considerable interest in preparing high-quality gluten-free bread. The effect of the molecular structure of extruded pregelatinization starch on the dough's rheological properties and the brown rice bread's quality was investigated. Extruded rice starch (ERS) was prepared with various added moisture contents of 20 % (ERS20), 30 % (ERS30), and 40 % (ERS40), respectively. ERS had smaller molecular weight and more short branched chains as the moisture content decreased. The dough elasticity and deformation resistance were improved with the ERS supplementation and in the order of ERS40 > ERS30 > ERS20 at the same level. Fortification with ERS improved the gluten-free brown rice bread quality. Compared to the control group, breadcrumbs supplemented with ERS20 at the 10 % level showed an increase in cell density from 17.87 cm-2 to 28.32 cm-2, a decrease in mean cell size from 1.22 mm2 to 0.81 mm2, and no significant change in cell area fraction. In addition, the specific volume increased from 1.50 cm3/g to 2.04 cm3/g, the hardness decreased from 14.34 N to 6.28 N, and the springiness increased from 0.56 to 0.74. The addition of extruded pregelatinization starches with smaller molecular weights and higher proportions of short chains is promising for preparing high-quality gluten-free bread.

2.
Food Chem ; 452: 139473, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723564

RESUMO

We had previously observed that adding pectin into milk before fermentation inhibited gelation of yogurt but did not affect the pH. Thus, this work aimed to prepare such liquid yogurt and clarify its formation mechanism. It was found that liquid yogurt was obtained in the presence of 0.10%-0.20% pectin. However, at lower or higher pectin concentrations, yogurt was gelled. Confocal laser scanning microscopy analysis demonstrated that 0.10%-0.20% pectin induced milk protein aggregating into separated particles rather than a continuous network, which explained why liquid yogurt was formed. Moreover, adding 0.10%-0.20% pectin into the casein micelle suspension induced aggregation of casein micelles at pH 6.8. After pH decreased to 4.3, casein micelles showed more aggregation but they were still separated particles, which was the same in the corresponding yogurt samples. These results suggested that pectin changed the aggregation mode of casein micelles and induced formation of liquid yogurt.


Assuntos
Pectinas , Iogurte , Iogurte/análise , Pectinas/química , Concentração de Íons de Hidrogênio , Leite/química , Animais , Micelas , Caseínas/química , Fermentação , Proteínas do Leite/química , Manipulação de Alimentos
3.
Food Chem ; 449: 139110, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581781

RESUMO

This study explored the effect of stirred media mill (SMM) processing on the acid-induced gelling properties of pea protein. Results showed that SMM treatment enhanced the gel strength from 75.06 g to 183.89 g and increased the water holding capacity from 46.64 % to 73.50 %. The minimum gelation concentration achieved for SMM-treated pea protein was 4 %, significantly lower than that of heat-pretreated pea protein (9 %). SMM decreased protein aggregate size from 104 µm to 180 nm. Microscopy analysis revealed that the small aggregates facilitated the formation of uniform gel networks with tight connections. Linear rheology indicated that small protein aggregates resulted in slower gelation rates with a higher G' for the formed gels. The SMM-pretreated protein gel showed strain hardening, shear thinning behaviors, and satisfactory stability to withstand large-amplitude oscillatory shear. Overall, SMM emerges as a promising technology for producing protein gel products with strong mechanical attributes and customizable rheological properties.


Assuntos
Géis , Proteínas de Ervilha , Pisum sativum , Reologia , Géis/química , Proteínas de Ervilha/química , Pisum sativum/química , Manipulação de Alimentos , Concentração de Íons de Hidrogênio
4.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532611

RESUMO

Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.

5.
Foods ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472915

RESUMO

As a natural flavoring agent, vanilla essential oil has a special aroma and flavor, but its volatility and instability limit its value. Therefore, in this study, vanilla essential oil was compounded with cinnamon essential oil to prepare nano-emulsions (composite nano-emulsions called C/VT and C/VM), and the stability of the composite essential oil emulsions was investigated. Transmission electron microscopy (TEM) images showed that the nano-emulsions were spherical in shape and some flocs were observed in C/VM and C/VT. The results showed that the average droplet sizes of C/VM and C/VT increased only by 14.99% and 15.01% after heating at 100 °C for 20 min, and the average droplet sizes were less than 120 nm after 24 days of storage at 25 °C. Possibly due to the presence of reticulated flocs, which have a hindering effect on the movement of individual droplets, the instability indices of C/VM and C/VT were reduced by 34.9% and 39.08%, respectively, in comparison to the instability indices of C/VM and C/VT. In addition, the results of antioxidant experimental studies showed that the presence of composite essential oil flocs had no significant effect on the antioxidant capacity. These results indicate that the improved stability of the composite essential oil nano-emulsions is conducive to broadening the application of vanilla essential oil emulsions.

6.
Int J Biol Macromol ; 262(Pt 2): 130143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367775

RESUMO

A novel carrier comprised of ethanol- and alkali-modified cellulosic pomelo pith matrix coated with alginate was developed to improve viability while enabling gastrointestinal release of probiotics. Scanning electron microscopy imaging revealed the agricultural byproduct had a honeycomb-structured cellulose framework, enabling high loading capacity of the probiotic Lactobacillus plantarum up to 9 log CFU/g. Ethanol treatment opened up pores with an average diameter of 97 µm, while alkali treatment increased swelling and porosity, with an average pore size of 51 µm. The survival rate through the stomach was increased from 89.76 % to 91.08 % and 91.24 % after ethanol and alkali modification, respectively. The control group displayed minimal release in the first 4 h followed by a burst release. Both ethanol modification and alkali modification resulted in constant linear release over time. The release time was prolonged when decreasing the width of the pomelo peel rolls from 10 mm to 5 mm while keeping the volume of the peel constant. After 8 weeks of refrigerated storage, the cellulose-encapsulated probiotics retained viability above 7 log CFU/g. This study demonstrates the potential of the structurally intact, sustainably-sourced cellulosic pomelo pith for probiotic encapsulation and controlled delivery.


Assuntos
Alginatos , Probióticos , Celulose , Preparações de Ação Retardada , Álcalis , Etanol , Viabilidade Microbiana
7.
Anal Chem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315820

RESUMO

Senescence is an important biological process, which leads to the gradual degradation of its physiological function and increases morbidity and mortality. Herein, a novel ratiometric fluorescent probe (P1) was constructed by using benzothiazolyl acetonitrile dye as fluorophore, exhibiting significantly enhanced blue-shifted emission to indicate the activity of ß-galactosidase (ß-gal), a commonly used biomarker for the detection of senescent cells. After incubation with ß-gal, the excimer emission of P1 at 620 nm was weakened, while the emission at 533 nm was significantly enhanced, forming an obvious ratiometric probe with high sensitivity and low detection limit (2.7 mU·mL-1). More importantly, probe P1 can locate lysosomes accurately, allowing us to monitor the emergence of living cell senescence in real time. P1 was successfully used to detect ß-gal activity in PC-12 cells, Hep G2 cells, and RAW 264.7 cells. It showed strong green fluorescence signal in senescent cells and red fluorescence signal in normal cells, indicating that it can detect endogenous senescence-related ß-gal content in living cells. For in vivo drug-induced senescence imaging, after 5 weeks of injection of D-galactose or hydroxyurea, the mice showed significant fluorescence enhancement in specific channels to indicate the activity of ß-gal in vivo. At the same time, the senescence of cell-specific organs and skin tissues at the organ level were also detected, which proved that the drug-induced senescence of brain, skin, and muscle tissues was the most serious. These results supported the important application value of P1 in senescence biomedical research.

8.
Food Res Int ; 176: 113844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163734

RESUMO

Rice protein hydrolysate (RPH) and feruloyl oligosaccharides (FOs) were conjugated under the catalysis of laccase and free radical, and the structure and properties of the resultant conjugates were studied. Electrophoresis analysis demonstrated that conjugation with FOs increased the molecular weight of some fractions in RPH, which confirmed the formation of both conjugates. The conjugation degree of laccase-induced conjugate and radical-induced conjugate was 60.45% and 22.70%, respectively. Laccase-catalyzed conjugation decreased the tyrosine residue content of RPH but had no significant effect on the free amino group content, which suggested that tyrosine residues were the conjugation site in the laccase-induced conjugate. However, radical-catalyzed conjugation decreased both the free amino group content and the tyrosine residue content, which indicated that both free amino groups and tyrosine residues were the conjugation site in the radical-induced conjugate. The ultraviolet, fluorescence and circular dichroism spectroscopy analysis revealed that conjugation with FOs significantly altered the secondary and tertiary structure of RPH. In addition, conjugation with FOs increased the solubility and antioxidant activity of RPH but decreased the emulsifying activity and stability. Particularly, the radical-induced conjugate had greater anti-aggregation capacity and antioxidant activity but lower emulsifying activity and stability than the laccase-induced conjugate, which might be due to that their conjugation site and degree were different.


Assuntos
Lacase , Oryza , Lacase/química , Antioxidantes/química , Hidrolisados de Proteína , Oligossacarídeos/química , Tirosina
9.
Food Chem ; 442: 138414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237299

RESUMO

Based on the findings of our previous studies, a comprehensive comparative investigation of the quality and formation mechanism of gels obtained from protein self-assemblies induced by different methods is necessary. Self-assembled heat-induced gels had higher gel mechanical strength, and hydrophobic interactions played a greater role. Whether or not heat treatment was used to induce gel formation may play a more important role than the effect of divalent cations on gel formation. Hydrogen bonds played an important role in all gels formed using different gelation methods. Furthermore, Self-assembled cold-induced gels were considered to can load bioactive substances with different hydrophilicity properties due to the high water-holding capacity and the smooth, dense microstructure. Therefore, ß-lactoglobulin fibrous and worm-like self-assembled cold-induced gels as a delivery material for hydrophilic bioactive substances (epigallocatechin gallate, vitamin B2) and amphiphilic bioactive substance (naringenin), with good encapsulation efficiency (91.92 %, 97.08 %, 96.72 %, 96.52 %, 98.94 %, 97.41 %, respectively) and slow-release performance.


Assuntos
Lactoglobulinas , Água , Lactoglobulinas/química , Água/química , Géis/química , Temperatura Alta
10.
J Sci Food Agric ; 104(3): 1804-1812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37867464

RESUMO

BACKGROUND: The use of rutin in the food industry is limited by its poor solubility. Encapsulation can be used as an effective way to improve polyphenol solubility. Proteins with high safety, biocompatibility and multiple binding sites are known as the most promising encapsulating carriers. Therefore, the improvement of rutin solubility by pH-driven encapsulation of rutin in soy protein isolate (SPI) nanoparticles, as well as the form of rutin after encapsulation and rutin-protein binding index were investigated. RESULTS: SPI had a high encapsulation efficiency (87.5%) and loading amount (10.6%) for rutin. When the mass ratio of protein to rutin was 5:1, the highest concentration of rutin in solution was 3.27 g L-1 , which was a 51.57-fold increase compared to the original rutin. At this situation, rutin transformed from crystalline to amorphous form. During the formation of nanoparticles, SPI was in a dynamic change of unfolding and refolding. Rutin deprotonated in alkaline conditions increasing its solubility and bound to protein to form nanoparticles during the process of returning to neutral. Hydrophobic interactions and hydrogen bonding promoted the formation of the nanoparticles and there were at least 1-2 binding sites between rutin and each SPI molecule. CONCLUSION: The results suggested that encapsulation of rutin in protein nanoparticles can effectively increase the solubility of rutin. This study may provide important information for the effective utilization of polyphenol functional foods. © 2023 Society of Chemical Industry.


Assuntos
Nanopartículas , Rutina , Solubilidade , Proteínas de Soja/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polifenóis
11.
J Sci Food Agric ; 104(4): 1971-1983, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37897157

RESUMO

BACKGROUND: Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS: Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS: The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.


Assuntos
Gliadina , Nanopartículas , Emulsões/química , Gliadina/química , Tamanho da Partícula , Nanopartículas/química , Suplementos Nutricionais , Água/química , Concentração de Íons de Hidrogênio
12.
Food Chem ; 440: 138261, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150905

RESUMO

This work investigated the effect of tannic acid on the fermentation rate of resistant starch. It was found that 1.0 and 1.5 µmol/L tannic acid decreased the rate of producing gas and short-chain fatty acids (SCFAs) from fermentation of resistant starch, and 1.5 µmol/mL tannic acid had a more profound effect, which confirmed that tannic acid delayed the metabolism of resistant starch. Moreover, tannic acid significantly inhibited the α-amylase activity during fermentation. On the other hand, tannic acid delayed the enrichment of some starch-degrading bacteria. Besides, fermentation of the resistant starch/tannic acid mixtures resulted in more SCFAs, particularly butyrate, and higher abundance of beneficial bacteria, including Bifidobacterium, Faecalibacterium, Blautia and Dorea, than fermentation of resistant starch after 48 h. Thus, it was inferred that tannic acid could delay the metabolism of resistant starch, which was due to its inhibitory effect on the α-amylase activity and regulatory effect on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Polifenóis , Amido Resistente , Humanos , Fermentação , Amido Resistente/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Amido/metabolismo , Bactérias/genética , Bactérias/metabolismo , alfa-Amilases/metabolismo
13.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047561

RESUMO

To study human gastrointestinal physiology, biomedical scientists have relied on the use of model organisms. Although many researchers have used mice as a model to study intestinal function, only a few reports have focused on Drosophila melanogaster (D. melanogaster). Compared to mice, fruit flies present many advantages, such as a short life cycle, cost-effective and simple maintenance, and no ethical issues. Furthermore, the mammalian gastrointestinal physiology, anatomy, and signaling pathways are highly conserved in D. melanogaster. Plant extracts have been used traditionally to treat diarrhea and constipation. For example, Psidium guajava (P. guajava) is one of the most known antidiarrheal agents in the tropics. However, no studies have evaluated the effect of antidiarrheal and laxative drugs and plant extracts in D. melanogaster, and it remains unknown if similar effects (e.g., smaller, more concentrated, and less abundant fecal deposits in the case of antidiarrheal drugs) can occur in the fruit flies compared to mammals. In this study, an antidiarrheal effect induced by P. guajava is demonstrated in a D. melanogaster strain that presents a diarrheic phenotype. Fecal sampling produced by flies is monitored using a dye-supplemented food. This protocol outlines the method used for preparing food with drugs, evaluating the fecal deposits of flies fed on these food preparations, and interpreting the data obtained.


Assuntos
Antidiarreicos , Extratos Vegetais , Animais , Antidiarreicos/farmacologia , Diarreia/tratamento farmacológico , Drosophila melanogaster , Extratos Vegetais/farmacologia
14.
Bioresour Technol ; 387: 129649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558104

RESUMO

To facilitate biomolecules extraction and bioaccessibility of Chlorella pyrenoidosa, a novel industry-scale microfluidization (ISM) was used to disrupt cells effectively. Microscope images showed ISM damaged cell integrity, disorganized cell wall structure, pulverized cell membrane and promoted the release of intracellular components. The decrease of particle size and the increase of ζ-potential also confirmed the cell disruption. The cell breakage ratio of sample treated at 120 MPa was 98%. Compared with untreated samples, total soluble solid content and protein extraction rate of the sample treated at 120 MPa increased by 2 °Brix and 12%. Protein was degraded by ISM, the release of intracellular protein and the reduction of molecular weight increased protein digestibility by 20% in in vitro gastric phase. Lipid yield and chlorophyll b content were also increased by ISM. These results provided a new solution to cell disruption of microalgae and expanded the application field of ISM.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismo , Microalgas/metabolismo , Membrana Celular
15.
Int J Biol Macromol ; 253(Pt 1): 126617, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652319

RESUMO

This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.


Assuntos
Proantocianidinas , Amido , Amido/química , Amilopectina/química , Amilose/química , Zea mays/química , Polifenóis
16.
Int J Biol Macromol ; 246: 125647, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394221

RESUMO

Fermentation of resistant starch from the starch-ferulic acid inclusion complex, one representative of the starch-polyphenol inclusion complex, was investigated in this study. It was found that this complex-based resistant starch, high-amylose corn starch and the mixture of ferulic acid and high-amylose corn starch were mainly utilized at the initial 6 h as indicated by the gas production and pH. Besides, the supplement of high-amylose corn starch, the mixture and the complex promoted production of short-chain fatty acids (SCFAs), reduced the ratio of Firmicutes/Bacteroidetes (F/B) and selectively stimulated the proliferation of some beneficial bacteria. Specifically, the production of SCFAs in the control and high-amylose starch, mixture and complex groups was 29.33 mM, 140.82 mM, 144.12 mM, and 167.4 mM after fermentation for 48 h, respectively. Moreover, the F/B ratio of those groups was 1.78, 0.78, 0.8 and 0.69, respectively. These results suggested that the supplement of the complex-based resistant starch led to the most SCFAs and the lowest F/B ratio (P < 0.05). Moreover, the complex group had the largest abundance of beneficial bacteria, including Bacteroides, Bifidobacterium and Lachnospiraceae_UCG-001 (P < 0.05). In summary, the resistant starch from the starch-ferulic acid inclusion complex exhibited stronger prebiotic activity than high-amylose corn starch and the mixture.


Assuntos
Amilose , Amido , Amido/metabolismo , Amido Resistente , Zea mays/metabolismo , Fermentação , Ácidos Graxos Voláteis , Bactérias/metabolismo , Firmicutes/metabolismo , Bacteroidetes/metabolismo
17.
J Food Sci ; 88(9): 3879-3892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458306

RESUMO

A novel whole peanut butter (PB) was developed using an emerging technology called stirred media mill (SMM). The impact of SMM on the size, microstructure, rheology, nutrient, and flavor of PB was investigated. The SMM treatment significantly decreased the particle size of PB, damaged cell structure, and released the oil body from cells. The apparent viscosity of PB decreased with the grinding process. Visual inspection revealed that the colloidal stability of PB was improved. The fatty acid composition was not affected by the grinding process. However, the tocopherol contents of the extracted oil slightly increased. Electronic nose and GC-MS analysis indicated that SMM could alter the flavor of PB after grinding for 45 min. Overall, SMM was a potential process technology to manufacture stable nut butter with smooth texture and delightful flavor profile.


Assuntos
Arachis , Ácidos Graxos , Arachis/química , Nutrientes , Reologia
18.
Carbohydr Polym ; 316: 121059, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321742

RESUMO

Organic dyes, such as methyl orange (MO), Congo red (CR), crystal violet (CV) and methylene blue (MB), are common organic pollutants existing in wastewater. Therefore, the exploration of bio-based adsorbents for the efficient removal of organic dyes from wastewater has gained many attentions. Here, we report a PCl3-free synthetic method for the synthesis of phosphonium-containing polymers, in which the prepared tetrakis(2-carboxyethyl) phosphonium chloride-crosslinked ß-cyclodextrin (TCPC-ß-CD) polymers were applied to the removal of dyes from water. The effects of contact time, pH (1-11), and dye concentration were investigated. The selected dye molecules could be captured by the host-gest inclusion of ß-CD cavities, and the phosphonium and carboxyl groups in the polymer structure would respectively facilitate the removal of cationic dyes (MB and CV) and anionic dyes (MO and CR) via electrostatic interactions. In a mono-component system, over 99 % of MB could be removed from water within the first 10 min. Based on the Langmuir model, the calculated maximum adsorption capacities of MO, CR, MB, and CV were 180.43, 426.34, 306.57, and 470.11 mg/g (or 0.55, 0.61, 0.96 and 1.15 mmol/g), respectively. Additionally, TCPC-ß-CD was easily regenerated using 1 % HCl in ethanol, and the regenerative adsorbent still showed high removal capacities for MO, CR, and MB even after seven treatment cycles.


Assuntos
Poluentes Químicos da Água , beta-Ciclodextrinas , Águas Residuárias , Poluentes Químicos da Água/química , Corantes/química , beta-Ciclodextrinas/química , Polímeros , Vermelho Congo , Adsorção , Azul de Metileno/química , Concentração de Íons de Hidrogênio
19.
Foods ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048191

RESUMO

Rice bran, rich in feruloyl arabinoxylan, is a good source of feruloyl oligosaccharides (FOs). To prepare FOs, bran was often hydrolyzed by amylase and protease to remove starch and protein and then hydrolyzed by xylanase, which was time-consuming and had a low yield. To solve the above problems, enzymatic extrusion was used to treat rice bran, and the effects of traditional hydrolysis, a combination of traditional extrusion and hydrolysis (extrusion-hydrolysis) and enzymatic extrusion on the yield of FOs were investigated and compared in this study. It was found that traditional extrusion and enzymatic extrusion significantly increased the yield of FOs. Particularly, the yield of FOs resulting from enzymatic extrusion was increased to 5.78%, while the yield from traditional hydrolysis was 4.23%. Microscopy analysis showed that extrusion damaged the cell wall of bran, which might increase the accessibility of xylanase to arabinoxylan and the yield of FOs. Spectroscopy analysis suggested that FOs obtained by different pretreatments had similar structures. It was obvious that enzymatic extrusion saved the time for removal of starch and protein and increased the yield of FOs. In addition, the highest yield of FOs was found at the moisture content of 30% and the screw speed of 50 rpm. This study provided an efficient method for the preparation of FOs that is suitable for industrial production.

20.
Int J Biol Macromol ; 240: 124457, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068535

RESUMO

Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 µm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.


Assuntos
Lactoglobulinas , Proantocianidinas , Bovinos , Animais , Lactoglobulinas/química , Simulação de Acoplamento Molecular , Emulsões/química , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA