Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446257

RESUMO

WUSCHEL-related homeobox (WOX) proteins participate profoundly in plant development and stress responses. As the difficulty of somatic embryogenesis severely constrains cotton genetic modification, in this study, we identified and comprehensively analyzed WOX genes in cotton. As a result, 40 WOX genes were identified in the upland cotton genome. All these cotton WOX genes were classified into three clades, ancient, intermediate, and modern clades, based on the phylogenetic analysis of previous studies. The majority (24) of the cotton WOX genes belonged to the modern clade, in which all gene members contain the vital functional domain WUS-box, which is necessary for plant stem cell regulation and maintenance. Collinearity analysis indicated that the WOX gene family in cotton expanded to some degree compared to Arabidopsis, especially in the modern clade. Genome duplication and segmental duplication may greatly contribute to expansion. Hormone-response- and abiotic-stress-response-related cis-acting regulatory elements were widely distributed in the promoter regions of cotton WOX genes, suggesting that the corresponding functions of stress responses and the participation of development processes were involved in hormone responses. By RNA sequencing, we profiled the expression patterns of cotton WOX genes in somatic embryogenesis. Only about half of cotton WOX genes were actively expressed during somatic embryogenesis; different cotton WOX genes may function in different development stages. The most representative, GhWOX4 and GhWOX13, may function in almost all stages of somatic embryogenesis; GhWOX2 and GhWOX9 function in the late stages of embryo patterning and embryo development during cotton somatic embryogenesis. Co-expression analysis showed that the cotton WOXs co-expressed with genes involved in extensive genetic information processing, including DNA replication, DNA repair, homologous recombination, RNA transport, protein processing, and several signaling and metabolism pathways, in which plant hormones signal transduction, MAPK signaling pathways, phosphatidylinositol signaling systems, and ABC transporters, as well as the metabolism of fatty acid; valine, leucine, and isoleucine biosynthesis; and cutin, suberine, and wax biosynthesis, were most significantly enriched. Taken together, the present study provides useful information and new insights into the functions of cotton WOX genes during somatic embryogenesis. The specific regulatory roles of some WOX genes in somatic embryogenesis are worthy of further functional research.


Assuntos
Gossypium , Família Multigênica , Gossypium/metabolismo , Filogenia , Proteínas de Ligação a DNA/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Commun ; 4(6): 100636, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37301981

RESUMO

The bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) is a master regulator of seed germination and post-germinative growth in response to abscisic acid (ABA), but the detailed molecular mechanism by which it represses plant growth remains unclear. In this study, we used proximity labeling to map the neighboring proteome of ABI5 and identified FCS-LIKE ZINC FINGER PROTEIN 13 (FLZ13) as a novel ABI5 interaction partner. Phenotypic analysis of flz13 mutants and FLZ13-overexpressing lines demonstrated that FLZ13 acts as a positive regulator of ABA signaling. Transcriptomic analysis revealed that both FLZ13 and ABI5 downregulate the expression of ABA-repressed and growth-related genes involved in chlorophyll biosynthesis, photosynthesis, and cell wall organization, thereby repressing seed germination and seedling establishment in response to ABA. Further genetic analysis showed that FLZ13 and ABI5 function together to regulate seed germination. Collectively, our findings reveal a previously uncharacterized transcriptional regulatory mechanism by which ABA mediates inhibition of seed germination and seedling establishment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Sementes/genética , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
3.
Biology (Basel) ; 12(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36829606

RESUMO

Timely flowering is a determinative trait for many economically valuable species in the Dendrobium genus of the Orchidaceae family, some of which are used for ornamental and medicinal purposes. D. nobile, a representative species of nobile-type Dendrobium, normally flowers in spring after exposure to sufficient low temperatures in winter. However, flowering can be stopped or disrupted by the untimely application of high temperatures. Little is known about the regulation and the mechanisms behind this switch. In this study, we report two isoforms from the KFK09_017173 locus of the D. nobile genome, named DnFCAγ and DnFCAß, respectively, that cooperatively regulate flowering in D. nobile. These two isoforms are generated by alternative 3' polyadenylation of DnFCA (FLOWERING CONTROL LOCUS C in D. nobile) pre-mRNA and contain a distinct 3'-terminus. Both can partially rescue late flowering in the Arabidopsis fca-1 mutant, while in wild-type Arabidopsis, they tend to delay the flowering time. When introduced into the detached axillary buds or young seedlings of D. nobile, both were able to induce the transcription of DnAGL19 (AGAMOUS LIKE 19 in D. nobile) in seedlings, whereas only DnFCAγ was able to suppress the transcription of DnAPL1 (AP1-LIKE 1 in D. nobile) in axillary buds. Furthermore, the time-course change of DnFCAγ accumulation was opposite to that of DnAPL1 in axillary buds, which was remarkable under low temperatures and within a short time after the application of high temperatures, supporting the suggestion that the expression of DnAPL1 can be inhibited by a high accumulation of DnFCAγ in floral buds. In leaves, the accumulation of DnFCAß was in accordance with that of DnAGL19 and DnFT (FLOWERING LOCUS T in D. nobile) to a large extent, suggesting the activation of the DnAGL19-DnFT pathway by DnFCAß. Taken together, these results suggest that the DnFCAγ-DnAPL1 pathway in axillary buds and the DnFCAß-DnAGL19 pathway in the leaves cooperatively promote flowering under low temperatures. The long-term and constant, or untimely, application of high temperatures leads to the constitutive suppression of DnAPL1 by a high level of DnFCAγ in axillary buds, which consequently delays floral development.

4.
Bioengineered ; 13(2): 4328-4339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137655

RESUMO

Healing of various skin wounds is a lengthy process and often combined with bacterial infection and scar formation. Biomimetic electrospun nanofibrous wound dressing loaded with materials that possess properties of dual antibacterial and tissue repair would be developed to address this problem. In this study, a composite chitosan electrospun nanofibrous material containing Cur@ß-CD/AgNPs nanoparticles composed of silver and curcumin possessed synergic effects on antibacterial activity and wound healing. The developed functionalized silver nanoparticles showed effective activity against both Gram-negative and Gram-positive bacteria. In vivo, Cur@ß-CD/AgNPs chitosan dressing displayed enhanced wound closure rates compared to commercial AquacelAg. Moreover, Cur@ß-CD/AgNPs chitosan dressing contributed to the most uniform collagen distribution by Masson's trichrome staining. In brief, Cur@ß-CD/AgNPs chitosan nanofibers work as a potential wound dressing with antibacterial and antiscarring properties.


Assuntos
Bandagens , Curcumina , Nanopartículas Metálicas/química , Nanofibras/química , Prata/química , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Técnicas Eletroquímicas , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Masculino , Camundongos , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
5.
Biomed Res Int ; 2021: 4604883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820454

RESUMO

OBJECTIVE: To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. METHODS: PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. RESULTS: PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically (P < 0.05). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. CONCLUSION: Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


Assuntos
MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Apoptose/genética , Doenças Cardiovasculares/etiologia , Hipóxia Celular/genética , Linhagem Celular , Sobrevivência Celular/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , RNA Longo não Codificante/antagonistas & inibidores , Ratos , Regulação para Cima
6.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445480

RESUMO

Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/genética , Ferro/metabolismo , Proteínas de Transporte Vesicular/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Mutação , Proteólise , Ubiquitinação
7.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805388

RESUMO

FCS-like zinc finger family proteins (FLZs), a class of plant-specific scaffold of SnRK1 complex, are involved in the regulation of various aspects of plant growth and stress responses. Most information of FLZ family genes was obtained from the studies in Arabidopsis thaliana, whereas little is known about the potential functions of FLZs in crop plants. In this study, 37 maize FLZ (ZmFLZ) genes were identified to be asymmetrically distributed on 10 chromosomes and can be divided into three subfamilies. Protein interaction and subcellular localization assays demonstrated that eight typical ZmFLZs interacted and partially co-localized with ZmKIN10, the catalytic α-subunit of the SnRK1 complex in maize leaf mesophyll cells. Expression profile analysis revealed that several ZmFLZs were differentially expressed across various tissues and actively responded to diverse abiotic stresses. In addition, ectopic overexpression of ZmFLZ25 in Arabidopsis conferred hypersensitivity to exogenous abscisic acid (ABA) and triggered higher expression of ABA-induced genes, pointing to the positive regulatory role of ZmFLZ25 in plant ABA signaling, a scenario further evidenced by the interactions between ZmFLZ25 and ABA receptors. In summary, these data provide the most comprehensive information on FLZ family genes in maize, and shed light on the biological function of ZmFLZ25 in plant ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Família Multigênica , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Zea mays/efeitos dos fármacos , Dedos de Zinco/genética
8.
New Phytol ; 231(1): 193-209, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33772801

RESUMO

During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Complexos Endossomais de Distribuição Requeridos para Transporte , Arabidopsis/genética , Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Desenvolvimento Vegetal , Transporte Proteico , Vacúolos/metabolismo
9.
Int J Oncol ; 58(3): 419-420, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432370

RESUMO

Following the publication of the above paper, an interested reader drew to the authors' attention that, in Fig. 2D, the si­ITGB3/E­cadherin image appeared to show an overlap with the Scr/MDA231+CCL18/N­cadherin image from Fig. 4E in a paper published in 2013 that shared some of the same authors [Zhang B, Yin C, Li H, Shi L, Liu N, Sun Y, Lu S, Liu Y, Sun L, Li X et al: Nir1 promotes invasion of breast cancer cells by binding to chemokine (C­C motif) ligand 18 through the PI3K/Akt/GSK3ß/Snail signalling pathway. Eur J Cancer 49: 3900­3913, 2013]. Furthermore, the si­Scb/E­cadherin panel, also featured in Fig. 4D, appeared to show an overlap with a Figure included in the following paper that also featured some of the same authors, published in 2011 [Li W, Liu C, Tang Y, Li H, Zhou F and Lv S: Overexpression of Snail accelerates adriamycin induction of multidrug resistance in breast cancer cells. Asian Pac J Cancer Prev 12: 2575­2580, 2011]. The authors were able to re­examine their raw data, and identified the data that should have correctly been used in Fig. 2D in the above paper. The revised version of Fig. 2 is therefore shown on the next page, featuring the correct data panels for the si­Scb/E­cadherin and the si­ITGB3/E­Cadherin experiments. Note that these errors did not have a significant impact on the results or the conclusions reported in this study. The authors are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this Corrigendum, and all the authors agree to the publication of this Corrigendum. The authors sincerely apologize for the errors presented in this figure, and apologize to the readership for any inconvenience caused.[the original article was published in International Journal of Oncology 48: 1155­1164, 2016; DOI: 10.3892/ijo.2016.3319].

10.
Front Plant Sci ; 11: 604255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381137

RESUMO

Genetic transformation is a powerful tool to study gene function, secondary metabolism pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of the most important economic crops in the world. Current cotton transformation methods take at least seven to culture and are labor-intensive and limited to some cultivars. In this study, we first time achieved plantlet regeneration of cotton via embryogenesis from transformed hairy roots. We inoculated the cotyledon explants of a commercial cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase) gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP expression after transformation. 82% of transformed hairy roots produced embryonic calli, 12% of which regenerated into stable transformed cotton plants after 7 months of culture. The integration of GFP in the transformed cotton genomes were confirmed by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable expression of GFP were also detected by semi-quantitative RT-PCR analysis. The resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here we report a stable and reproducible method for A. rhizogenes-mediated transformation of cotton using cotyledon as explants, which provides a useful and reliable platform for gene function analysis of cotton.

11.
Front Plant Sci ; 11: 1280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973839

RESUMO

The membrane contact sites (MCSs) enable interorganelle communication by associating organelles at distances of tens of nanometers over extended membrane surfaces and serve to maintain cellular homeostasis through efficient exchange of metabolites, lipid, and calcium between organelles, organelle fission, and movement. Most MCSs and a growing number of tethering proteins especially those involved in mediating the junctions between endoplasmic reticulum (ER) and other organelles have been extensively characterized in mammal and yeast. However, the studies of plant MCSs are still at stages of infancy, at least one reason might be due to the lack of bona fide markers for visualizing these membrane junctions in plant cells. In this study, a series of genetically encoded reporters using split super-folder GFP protein were designed to detect the possible MCSs between ER and three other cellular compartments including chloroplast, mitochondria and plasma membrane (PM) in plant cell. By expressing these genetically encoded reporter in Arabidopsis protoplasts as well as Nicotiana benthamiana leaf, we could intuitively observe the punctate signal surrounding chloroplast upon expression of ER-chloroplast MCS reporter, punctate signal of ER-mitochondria MCS reporter and punctate signal close to the PM upon expression of ER-PM MCS reporter. We also showed that the ER-chloroplast MCSs were dynamic structures that undergo active remodeling with concomitant occurrence of chloroplast dysfunction inside plant cells. This study demonstrates that ER associates with various organelles in close proximity in plant cells and provides tools that might be applicable for visualizing MCSs in plants.

12.
Cell Death Dis ; 11(9): 751, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929075

RESUMO

Although ferroptosis has been recognized as a novel antitumoral treatment, high expression of nuclear factor erythroid 2-related factor 2 (NRF2) has been reported to be an antioxidant transcript factor that protects malignant cells from ferroptosis. Previous findings indicated that metallothionein 1D pseudogene (MT1DP), a long noncoding RNA (lncRNA), functioned to aggravate oxidative stress by repressing antioxidation. Here we aimed at assessing whether MT1DP could regulate erastin-induced ferroptosis on non-small cell lung cancer (NSCLC) and elucidating the mechanism. We found that ectopic expression of MT1DP sensitized A549 and H1299 cells to erastin-induced ferroptosis through downregulation of NRF2; in addition, ectopic MT1DP upregulated malondialdehyde (MDA) and reactive oxygen species (ROS) levels, increased intracellular ferrous iron concentration, and reduced glutathione (GSH) levels in cancer cells exposed to erastin, whereas downregulation of MT1DP showed the opposite effect. RNA pulldown assay and dual-luciferase reporter assay confirmed that MT1DP modulated the expression of NRF2 via stabilizing miR-365a-3p. As low solubility of erastin limits its efficient application, we further prepared folate (FA)-modified liposome (FA-LP) nanoparticles for targeted co-delivery of erastin and MT1DP to enhance the bioavailability and the efficiency of the drug/gene combination. Erastin/MT1DP@FA-LPs (E/M@FA-LPs) sensitized erastin-induced ferroptosis with decreased cellular GSH levels and elevated lipid ROS. In vivo analysis showed that E/M@FA-LPs had a favorable therapeutic effect on lung cancer xenografts. In short, our findings identify a novel strategy to elevate erastin-induced ferroptosis in NSCLCs acting through the MT1DP/miR-365a-3p/NRF2 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Lipossomos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Piperazinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Piperazinas/farmacologia , Transfecção
13.
J Integr Plant Biol ; 62(9): 1399-1417, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32786047

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is an ancient, evolutionarily conserved membrane remodeling complex that is essential for multivesicular body (MVB) biogenesis in eukaryotes. FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific ESCRT component, modulates MVB-mediated endosomal sorting and autophagic degradation. Although the basic cellular functions of FREE1 as an ESCRT component have been described, the regulators that control FREE1 turnover remain unknown. Here, we analyzed how FREE1 homeostasis is mediated by the RING-finger E3 ubiquitin ligases, SINA of Arabidopsis thaliana (SINATs), in response to iron deficiency. Under iron-deficient growth conditions, SINAT1-4 were induced and ubiquitinated FREE1, thereby promoting its degradation and relieving the repressive effect of FREE1 on iron absorption. By contrast, SINAT5, another SINAT member that lacks ubiquitin ligase activity due to the absence of the RING domain, functions as a protector protein which stabilizes FREE1. Collectively, our findings uncover a hitherto unknown mechanism of homeostatic regulation of FREE1, and demonstrate a unique regulatory SINAT-FREE1 module that subtly regulates plant response to iron deficiency stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética
14.
Mol Cell Biochem ; 473(1-2): 217-228, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32642794

RESUMO

Ferroptosis is a newly discovered form of regulated cell death and characterized by an iron-dependent accumulation of lethal lipid reactive oxygen species (ROS), ferroptosis may exhibit a novel spectrum of clinical activity for cancer therapy. However, the significance of ferroptosis in the context of carcinoma biology is still emerging. Glycogen synthase kinase-3ß (GSK-3ß) has been found to be a fundamental element in weaking antioxidant cell defense by adjusting the nuclear factor erythroid 2-related factor 2 (Nrf2). In our study, decreased expression of GSK-3ß was observed in the cancer tissues of breast cancer patients, results of immunohistochemistry indicated that Nrf2 was highly expressed in low-GSK-3ß-expressed breast cancer tissues. The contributions of aberrant expression of GSK-3ß and Nrf2 to the erastin-induced ferroptosis in breast cancer were further assessed, silence of GSK-3ß blocked erastin-induced ferroptosis with less production of ROS and malondialdehyde (MDA) via upregulation of GPX4 and downregulation of arachidonate 15-lipoxygenase (Alox15), overexpression of GSK-3ß enhanced erastin-triggered ferroptosis with elevated ROS and MDA. Enhanced erastin-induced ferroptosis by overexpression of GSK-3ß was blocked by activating Nrf2. We further confirmed that overexpression of GSK-3ß strengthened erastin-induced tumor growth inhibition in breast cancer xenograft models in vivo. In summary, our findings conclude that modulation the balance between GSK-3ß/Nrf2 is a promising therapeutic approach and probably will be important targets to enhance the effect of erastin-induced ferroptosis in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Ferroptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Ferroptose/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Células MCF-7 , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética
15.
J Cancer ; 10(23): 5681-5688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737105

RESUMO

Background: The molecular function of pannexin1 (Panx1) in different tumor types has been remained equivocal. Until now, there is no study focused on the function of panx1 in hepatocellular carcinoma (HCC). This study aimed to explore the role of Panx1 in the invasion and metastasis of HCC. Methods: The expressions of Panx1 in 126 cases of HCC were analyzed by immunohistochemistry (IHC). The effects of Panx1 on HCC cell metastasis and invasion were observed by transwell. The expression levels of Panx1 and epithelial-mesenchymal transition (EMT) related proteins in HCC cells and tissues were detected by western blot and IHC. The tumor metastatic abilities were compared between Panx1 knockout mice and nude mice. Results: The higher expression of Panx1 in HCC was positively correlated with tumor lymph node metastasis, TNM (tumor, node, metastasis) classification and poor prognosis (overall survival, hazard ratio [HR] 2.769, 95% confidence interval [95%CI] 1.528-5.017, P=0.001; disease-free survival, HR=2.344, 95%CI 1.473-3.730, P<0.001). Overexpression of Panx1 promoted invasion and migration of HCC cells through modulation of EMT in vitro and in vivo. Conclusions: Our results suggest that the high expression of Panx1 is associated with poor HCC prognosis, providing a new clue for effective intervention for HCC metastasis.

16.
Genes (Basel) ; 10(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547015

RESUMO

Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes.


Assuntos
Genes de Plantas , Genoma de Planta , Gossypium/genética , Ácidos Indolacéticos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética
17.
BMC Plant Biol ; 19(1): 314, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307397

RESUMO

BACKGROUND: LEAFY COTYLEDON 2 (LEC2) acts throughout embryo morphogenesis and maturation phase to maintain embryogenic identity. Our previous study stated that Arabidopsis thaliana LEC2 (AtLEC2) driven by glucocorticoid receptor-dexamethasone (GR-DEX) inducible system (AtLEC2-GR) triggers embryogenic callus formation in tobacco (Nicotiana tabacum). RESULTS: In this study, the adenosine phosphate isopentenyltransferase genes AtIPT3, AtIPT7 and the tRNA isopentenyltransferase gene AtIPT9 were overexpressed in the AtLEC2-GR transgenic background. In the AtIPT7-OE AtLEC2-GR and AtIPT9-OE AtLEC2-GR seedlings, high-quality embryogenic callus was obtained under the DEX condition, and the shoot regeneration efficiency was 2 to 3.5 folds higher than AtLEC2-GR alone on hormone free medium without DEX. Transcriptome analyses showed that up-regulated BBM, L1L, ABI3, and FUS3 might function during embryogenic callus formation. However, at the shoot regeneration stage, BBM, L1L, ABI3, and FUS3 were down-regulated and Type-B ARRs were up-regulated, which might contribute to the increased shoot regeneration rate. CONCLUSIONS: A novel system for inducing shoot regeneration in tobacco has been developed using the GR-DEX system. Induced expression of AtLEC2 triggers embryogenic callus formation and overexpression of AtIPT7 or AtIPT9 improves shoot regeneration without exogenous cytokinin.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nicotiana/genética , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas , Fatores de Transcrição/genética , Dexametasona/farmacologia , Plantas Geneticamente Modificadas , Receptores de Glucocorticoides/genética , Sementes , Nicotiana/embriologia , Nicotiana/crescimento & desenvolvimento
18.
Genes (Basel) ; 9(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501109

RESUMO

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been reported to play important roles in plant growth, development, and stress responses. However, no comprehensive analysis of this family has been performed in cotton (Gossypium spp.), which is an important economic crop that suffers various stresses in growth and development. Here we conducted a comprehensive analysis of LRR-RLK family in four Gossypium species (Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii). A total of 1641 LRR-RLK genes were identified in the four Gossypium species involved in our study. The maximum-likelihood phylogenetic tree revealed that all the LRR-RLK genes were divided into 21 subgroups. Exon-intron organization structure of LRR-RLK genes kept relatively conserved within subfamilies and between Arabidopsis and Gossypium genomes. Notably, subfamilies XI and XII were found dramatically expanded in Gossypium species. Tandem duplication acted as an important mechanism in expansion of the Gossypium LRR-RLK gene family. Functional analysis suggested that Gossypium LRR-RLK genes were enriched for plant hormone signaling and plant-pathogen interaction pathways. Promoter analysis revealed that Gossypium LRR-RLK genes were extensively regulated by transcription factors (TFs), phytohormonal, and various environmental stimuli. Expression profiling showed that Gossypium LRR-RLK genes were widely involved in stress defense and diverse developmental processes including cotton fiber development and provides insight into potential functional divergence within and among subfamilies. Our study provided valuable information for further functional study of Gossypium LRR-RLK genes.

19.
BMC Plant Biol ; 18(1): 226, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305032

RESUMO

BACKGROUND: Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS: In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION: We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Duplicação Gênica , Histona Desacetilases/genética , Proteínas Luminescentes/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Glycine max/genética
20.
Plant Sci ; 272: 55-61, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807606

RESUMO

Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA