Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Virol ; 97(5): e0036423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255314

RESUMO

Classical swine fever virus (CSFV) is a highly pathogenic RNA virus belonging to the Flaviviridae family that can cause deadly classical swine fever (CSF) in pigs. However, the molecular details of virus replication in the host are still unclear. Our previous studies have reported that several Rab proteins mediate CSFV entry into host cells, but it is unknown whether CSFV hijacks other Rab proteins for effective viral infection. Here, we systematically studied the role of Rab14 protein in regulating lipid metabolism for promoting viral assembly. First, Rab14 knockdown and overexpression significantly affected CSFV replication, indicating the essential role of Rab14 in CSFV infection. Interestingly, Rab14 could significantly affect virus replication in the late stage of infection. Mechanistically, CSFV NS5A recruited Rab14 to the ER, followed by ceramide transportation to the Golgi apparatus, where sphingomyelin was synthesized. The experimental data of small molecule inhibitors, RNA interference, and replenishment assay showed that the phosphatidylinositol-3-kinase (PI3K)/AKT/AS160 signaling pathway regulated the function of Rab14 to affect the transport of ceramide. More importantly, sphingomyelin on the Golgi apparatus contributed to the assembly of viral particles. Blockage of the Rab14 regulatory pathway induced the reduction of the content of sphingomyelin on the Golgi apparatus, impairing the assembly of virus particles. Our study clarifies that Rab14 regulates lipid metabolism and promotes CSFV replication, which provides insight into a novel function of Rab14 in regulating vesicles to transport lipids to the viral assembly factory. IMPORTANCE The Rab protein family members participate in the viral replication of multiple viruses and play important roles in the virus infection cycle. Our previous research focused on Rab5/7/11, which regulated the trafficking of vesicles in the early stage of CSFV infection, especially in viral endocytosis. However, the role of other Rab proteins in CSFV replication is unclear and needs further clarification. Strikingly, we screened some Rabs and found the important role of Rab14 in CSFV infection. Virus infection mobilized Rab14 to regulate the vesicle to transport ceramide from the ER to the Golgi apparatus, further promoting the synthesis of sphingomyelin and facilitating virus assembly. The treatment of inhibitors showed that the lipid transport mediated by Rab14 was regulated by the PI3K/AKT/AS160 signaling pathway. Knockdown of Rab14 or the treatment with PI3K/AKT/AS160 inhibitors reduced the ceramide content in infected cells and hindered virus assembly. Our study is the first to explain that vesicular lipid transport regulated by Rab promotes CSFV assembly, which is conducive to the development of antiviral drugs.


Assuntos
Ceramidas , Vírus da Febre Suína Clássica , Proteínas Monoméricas de Ligação ao GTP , Montagem de Vírus , Animais , Ceramidas/metabolismo , Peste Suína Clássica , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/metabolismo , Suínos , Replicação Viral
2.
J Virol ; 97(5): e0177022, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37129496

RESUMO

Vimentin (VIM), an indispensable protein, is responsible for the formation of intermediate filament structures within cells and plays a crucial role in viral infections. However, the precise role of VIM in classical swine fever virus (CSFV) infection remains unclear. Herein, we systematically investigated the function of VIM in CSFV replication. We demonstrated that both knockdown and overexpression of VIM affected CSFV replication. Furthermore, we observed by confocal microscopy the rearrangement of cellular VIM into a cage-like structure during CSFV infection. Three-dimensional (3D) imaging indicated that the cage-like structures were localized in the endoplasmic reticulum (ER) and ringed around the double-stranded RNA (dsRNA), thereby suggesting that VIM was associated with the formation of the viral replication complex (VRC). Mechanistically, phosphorylation of VIM at serine 72 (Ser72), regulated by the RhoA/ROCK signaling pathway, induced VIM rearrangement upon CSFV infection. Confocal microscopy and coimmunoprecipitation assays revealed that VIM colocalized and interacted with CSFV NS5A. Structurally, it was determined that amino acids 96 to 407 of VIM and amino acids 251 to 416 of NS5A were the respective important domains for this interaction. Importantly, both VIM knockdown and disruption of VIM rearrangement inhibited the localization of NS5A in the ER, implying that VIM rearrangement recruited NS5A to the ER for VRC formation. Collectively, our results suggest that VIM recruits NS5A to form a stable VRC that is protected by the cage-like structure formed by VIM rearrangement, ultimately leading to enhanced virus replication. These findings highlight the critical role of VIM in the formation and stabilization of VRC, which provides alternative strategies for the development of antiviral drugs. IMPORTANCE Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly infectious disease that poses a significant threat to the global pig industry. Therefore, gaining insights into the virus and its interaction with host cells is crucial for developing effective antiviral measures and controlling the spread of CSF. Previous studies have shown that CSFV infection induces rearrangement of the endoplasmic reticulum, leading to the formation of small vesicular organelles containing nonstructural protein and double-stranded RNA of CSFV, as well as some host factors. These organelles then assemble into viral replication complexes (VRCs). In this study, we have discovered that VIM recruited CSFV NS5A to form a stable VRC that was protected by a cage-like structure formed by rearranged VIM. This enhanced viral replication. Our findings not only shed light on the molecular mechanism of CSFV replication but also offer new insights into the development of antiviral strategies for controlling CSFV.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Vimentina/metabolismo , RNA de Cadeia Dupla , Filamentos Intermediários/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Antivirais , Aminoácidos/genética
3.
J Virol ; 97(1): e0192922, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602362

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Cinesinas , Animais , Vírus da Febre Suína Clássica/fisiologia , Dineínas/metabolismo , Endocitose , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virologia , Suínos , Internalização do Vírus , Replicação Viral/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico
5.
Vet Microbiol ; 272: 109511, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849988

RESUMO

Classical swine fever virus (CSFV), a member of the Flaviviridae enveloped RNA virus family, results in an epidemic disease that brings serious economic losses to the pig industry worldwide. Valosin-containing protein (VCP/p97), a multifunctional active protein in cells, is related to the life activities of many viruses. However, the role of VCP in CSFV infection remains unknown. In this study, it was first found that treatment of VCP inhibitors impaired CSFV propagation. Furthermore, overexpression or knockdown of VCP showed that it was essential for CSFV infection. Moreover, confocal microscopy and immunoprecipitation assay showed that VCP was recruited for intracellular transport from early endosomes to lysosomes. Importantly, knockdown of VCP prevented CSFV to release from early endosomes, suggesting that VCP is a key factor for CSFV trafficking. Taken together, our findings first demonstrate that the endocytosis of CSFV into PK-15 cells requires the participation of VCP, providing the alternative approach for the discovery of novel anti-flaviviridae drugs.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Endocitose , Imunoprecipitação/veterinária , Lisossomos/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Replicação Viral
6.
PLoS Pathog ; 18(2): e1010294, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120190

RESUMO

As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.


Assuntos
Vírus da Febre Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Vírus da Febre Suína Clássica/genética , Clatrina/metabolismo , Retículo Endoplasmático/metabolismo , Interações entre Hospedeiro e Microrganismos , Suínos , Vesículas Transportadoras , Internalização do Vírus , Replicação Viral
7.
Oncol Rep ; 47(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059740

RESUMO

Lung cancer is a common cancer type, and has the highest mortality rate in the world. A genome­wide association study suggests that the genetic marker rs9390123 is significantly associated with DNA repair capacity (DRC) in lung cancer. Analysis of the data derived from the 1000 Genomes Project indicated that there is another single nucleotide polymorphism (SNP), rs9399451, in strong linkage disequilibrium with rs9390123 in Caucasian individuals, thus suggesting that this SNP could be associated with DRC. However, the causal SNP and mechanism of DRC remain unclear. In the present study, dual luciferase assay results indicated that both SNPs are functional in lung cells. Through chromosome conformation capture, an enhancer containing the two functional SNPs was observed to bind the promoter of peroxisomal biogenesis factor 3 and phosphatase and actin regulator 2 antisense RNA 1 (PHACTR2­AS1). Knockdown of PHACTR2­AS1 could significantly influence lung cell proliferation, colony formation, migration and wound healing, which verified that PHACTR2­AS1 is a novel oncogene for lung cancer. Through chromatin immunoprecipitation, the transcription factor POU class 2 homeobox 1 (POU2F1) was identified to bind to the surrounding segments of these two SNPs, and their interaction was investigated. The present study identified the mechanism via which rs9390123 and rs9399451 could influence DRC.


Assuntos
Reparo do DNA/genética , Lipoproteínas/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Peroxinas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Antissenso/genética , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Oncogenes/genética
8.
J Virol ; 95(17): e0078121, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132567

RESUMO

Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B interacted with FASN and promoted overexpression of FASN, which is regulated by functional Rab18. Moreover, we found that FASN regulated the formation of lipid droplets (LDs) upon CSFV infection, promoting virus proliferation. Taken together, our work provides mechanistic insight into the role of FASN in the viral life of CSFV, and it highlights the potential antiviral target for the development of therapeutics against pestiviruses. IMPORTANCE Classical swine fever, caused by classical swine fever virus (CSFV), is one of the notifiable diseases by the World Organization for Animal Health (OIE) and causes significant financial losses to the pig industry globally. CSFV, like other (+)-strand RNA viruses, requires lipid and sterol biosynthesis for efficient replication. However, the role of lipid metabolism in CSFV replication remains unknown. Here, we found that fatty acid synthase (FASN) was involved in viral propagation. Moreover, FASN is recruited to CSFV replication sites in the endoplasmic reticulum (ER) and interacts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.


Assuntos
4-Butirolactona/análogos & derivados , Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Ácido Graxo Sintases/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas rab de Ligação ao GTP/metabolismo , 4-Butirolactona/farmacologia , Animais , Peste Suína Clássica/enzimologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Ácido Graxo Sintases/metabolismo , Interações Hospedeiro-Patógeno , Suínos , Proteínas não Estruturais Virais/genética , Proteínas rab de Ligação ao GTP/genética
9.
Vet Microbiol ; 259: 109152, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146894

RESUMO

Although previous reports have shown that Curcumin inhibits many viruses, including some important members of different genera of Flaviviridae family (Japanese encephalitis virus, dengue virus and hepatitis C virus), the antiviral activity of curcumin against Classical swine fever virus (CSFV), which belongs to Pestivirus genus, is still unclear. In this study, we found that curcumin inhibited CSFV replication in a dose-dependent manner, but had no effect on virus adsorption and entry. Furthermore, the results showed that curcumin inhibited the expression of FASN, one of the key enzymes of fatty acid synthesis pathway, thereby, causing the reduction of the production of LDs upon infection. To this end, we detected transcription factor 6 (ATF6), the key factor of regulating lipid metabolism along with other related molecules (CHOP and GPR78) and found that curcumin significantly impaired the gene synthesis of ATF6, while CSFV infection promoted ATF6 expression. Therefore, it is confirmed that curcumin inhibited CSFV replication by interfere lipid metabolism. In addition, our subsequent studies found that curcumin played an antiviral role by promoting the innate immune independent of NF-κB signaling pathway. Taken together, our finding highlights that curcumin is a potential candidate drug against CSFV for controlling CSF.


Assuntos
Vírus da Febre Suína Clássica/efeitos dos fármacos , Curcumina/farmacologia , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Metabolismo dos Lipídeos/genética , Transdução de Sinais , Suínos , Internalização do Vírus/efeitos dos fármacos
10.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33627389

RESUMO

Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.

11.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328308

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease of swine with high morbidity and mortality that negatively affects the pig industry worldwide, in particular in China. Soon after the endocytosis of CSFV, the virus makes full use of the components of host cells to complete its life cycle. The endocytosis sorting complex required for transport (ESCRT) system is a central molecular machine for membrane protein sorting and scission in eukaryotic cells that plays an essential role in many physiological metabolic processes, including invasion and egress of envelope viruses. However, the molecular mechanism that ESCRT uses to regulate the replication of CSFV is unknown. In this study, we demonstrated that the ESCRT-I complex Tsg101 protein participates in clathrin-mediated endocytosis of CSFV and is also involved in CSFV trafficking. Tsg101 assists the virus in entering the host cell through the late endosome (Rab7 and Rab9) and finally reaching the lysosome (Lamp-1). Interestingly, Tsg101 is also involved in the viral replication process by interacting with nonstructural proteins 4B and 5B of CSFV. Finally, confocal microscopy showed that the replication complex of Tsg101 and double-stranded RNA (dsRNA) or NS4B and NS5B protein was close to the endoplasmic reticulum (ER), not the Golgi, in the cytoplasm. Collectively, our finding highlights that Tsg101 regulates the process of CSFV entry and replication, indicating that the ESCRT plays an important role in the life cycle of CSFV. Thus, ESCRT molecules could serve as therapeutic targets to combat CSFV infection.IMPORTANCE CSF, caused by CSFV, is a World Organization for Animal Health (OIE) notifiable disease and causes significant financial losses to the pig industry globally. The ESCRT machinery plays an important regulatory role in several members of the genera Flavivirus and Hepacivirus within the family Flaviviridae, such as hepatitis C virus, Japanese encephalitis virus, and dengue virus. Previous reports have shown that assembling and budding of these viruses require ESCRT. However, the role of ESCRT in Pestivirus infection remains to be elucidated. We determined the molecular mechanisms of the regulation of CSFV infection by the major subunit Tsg101 of ESCRT-I. Interestingly, Tsg101 plays an essential regulatory role in both clathrin-mediated endocytosis and genome replication of CSFV. Overall, the results of this study provide further insights into the molecular function of ESCRT-I complex protein Tsg101 during CSFV infection, which may serve as a molecular target for pestivirus inhibitors.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/metabolismo , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/virologia , RNA Viral/metabolismo , Suínos , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo
12.
Vet Microbiol ; 238: 108436, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648726

RESUMO

The level of cholesterol in host cells has been demonstrated to affect viral infection. Our previous studies showed that cholesterol-rich membrane rafts mediated the entry of classical swine fever virus (CSFV) into PK-15 or 3D4/21 cells, but the role of cholesterol post entry was still not clear. In this study, we found that CSFV replication before fusion was affected when the cholesterol trafficking in infected cells was disrupted using a cholesterol transport inhibitor, U18666A. Our data showed that U18666A affected both the fusion and replication steps in the life cycle of the virus, but not its binding and entry steps. The subsequent experiments confirmed that niemann-pick C1 (NPC1), a lysosomal membrane protein that helps cholesterol to leave the lysosome, was affected by U18666A, which led to the accumulation of cholesterol in lysosomes and inhibition of CSFV replication. Imipramine, a cationic hydrophobic amine similar to U18666A, also inhibited CSFV replication via similar mechanism. Surprisingly, the antiviral effect of U18666A was restored by the histone deacetylase inhibitor (HDACi), Vorinostat, which suggested that HDACi reverted the dysfunction of NPC1, and intra-cellular cholesterol accumulation disappeared and CSFV replicability resumed. Together, these data indicated that CSFV transformed from early endosome and late endosome into lysosome after endocytosis for further replication and that U18666A was a potential drug candidate for anti-pestivirus treatment.


Assuntos
Androstenos/farmacologia , Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Febre Suína Clássica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Suínos
14.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769350

RESUMO

The members of Flaviviridae utilize several endocytic pathways to enter a variety of host cells. Our previous work showed that classical swine fever virus (CSFV) enters porcine kidney (PK-15) cells through a clathrin-dependent pathway that requires Rab5 and Rab7. The entry mechanism for CSFV into other cell lines remains unclear, for instance, porcine alveolar macrophages (3D4/21 cells). More importantly, the trafficking of CSFV within endosomes controlled by Rab GTPases is unknown in 3D4/21 cells. In this study, entry and postinternalization of CSFV were analyzed using chemical inhibitors, RNA interference, and dominant-negative (DN) mutants. Our data demonstrated that CSFV entry into 3D4/21 cells depends on caveolae, dynamin, and cholesterol but not clathrin or macropinocytosis. The effects of DN mutants and knockdown of four Rab proteins that regulate endosomal trafficking were examined on CSFV infection, respectively. The results showed that Rab5, Rab7, and Rab11, but not Rab9, regulate CSFV endocytosis. Confocal microscopy showed that virus particles colocalize with Rab5, Rab7, or Rab11 within 30 min after virus entry and further with lysosomes, suggesting that after internalization CSFV moves to early, late, and recycling endosomes and then into lysosomes before the release of the viral genome. Our findings provide insights into the life cycle of pestiviruses in macrophages.IMPORTANCE Classical swine fever, is caused by classical swine fever virus (CSFV). The disease is notifiable to World Organisation for Animal Health (OIE) in most countries and causes significant financial losses to the pig industry globally. Understanding the processes of CSFV endocytosis and postinternalization will advance our knowledge of the disease and provide potential novel drug targets against CSFV. With this objective, we used systematic approaches to dissect these processes in CSFV-infected 3D4/21 cells. The data presented here demonstrate for the first time to our knowledge that CSFV is able to enter cells via caveola-mediated endocytosis that requires Rab5, Rab7 and Rab11, in addition to the previously described classical clathrin-dependent pathway that requires Rab5 and Rab7. The characterization of CSFV entry will further promote our current understanding of Pestivirus cellular entry pathways and provide novel targets for antiviral drug development.


Assuntos
Cavéolas/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Endocitose , Macrófagos Alveolares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Cavéolas/virologia , Vírus da Febre Suína Clássica/genética , Macrófagos Alveolares/virologia , Suínos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
15.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343573

RESUMO

Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S-transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B.IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo, but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas de Resistência a Myxovirus/genética , Suínos , Proteínas não Estruturais Virais/genética
16.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724764

RESUMO

During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses.IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that requires Rab5 and Rab11. Our work provides a detailed picture of the entry of JEV into BHK-21 cells and the cellular events that follow.


Assuntos
Clatrina/metabolismo , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Endocitose/fisiologia , Internalização do Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Caveolinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Dinaminas/metabolismo , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
17.
J Virol ; 90(20): 9194-208, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489278

RESUMO

UNLABELLED: Classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae, is a small, enveloped, positive-strand RNA virus. Due to its economic importance to the pig industry, the biology and pathogenesis of CSFV have been investigated extensively. However, the mechanisms of CSFV entry into cells are not well characterized. In this study, we used systematic approaches to dissect CSFV cell entry. We first observed that CSFV infection was inhibited by chloroquine and NH4Cl, suggesting that viral entry required a low-pH environment. By using the specific inhibitor dynasore, or by expressing the dominant negative (DN) K44A mutant, we verified that dynamin is required for CSFV entry. CSFV particles were observed to colocalize with clathrin at 5 min postinternalization, and CSFV infection was significantly reduced by chlorpromazine treatment, overexpression of a dominant negative form of the EPS15 protein, or knockdown of the clathrin heavy chain by RNA interference. These results suggested that CSFV entry depends on clathrin. Additionally, we found that endocytosis of CSFV was dependent on membrane cholesterol, while neither the overexpression of a dominant negative caveolin mutant nor the knockdown of caveolin had an effect. These results further suggested that CSFV entry required cholesterol and not caveolae. Importantly, the effect of DN mutants of three Rab proteins that regulate endosomal traffic on CSFV infection was examined. Expression of DN Rab5 and Rab7 mutants, but not the DN Rab11 mutant, significantly inhibited CSFV replication. These results were confirmed by silencing of Rab5 and Rab7. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab7 during the early phase of infection within 45 min after virus entry. These results indicated that after internalization, CSFV moved to early and late endosomes before releasing its RNA. Taken together, our findings demonstrate for the first time that CSFV enters cells through the endocytic pathway, providing new insights into the life cycle of pestiviruses. IMPORTANCE: Bovine viral diarrhea virus (BVDV), a single-stranded, positive-sense pestivirus within the family Flaviviridae, is internalized by clathrin-dependent receptor-mediated endocytosis. However, the detailed mechanism of cell entry is unknown for other pestiviruses, such as classical swine fever (CSF) virus (CSFV). CSFV is the etiological agent of CSF, a highly contagious disease of swine that causes numerous deaths in pigs and enormous economic losses in China. Understanding the entry pathway of CSFV will not only advance our knowledge of CSFV infection and pathogenesis but also provide novel drug targets for antiviral intervention. Based on this objective, we used systematic approaches to dissect the pathway of entry of CSFV into PK-15 cells. This is the first report to show that the entry of CSFV into PK-15 cells requires a low-pH environment and involves dynamin- and cholesterol-dependent, clathrin-mediated endocytosis that requires Rab5 and Rab7.


Assuntos
Colesterol/metabolismo , Vírus da Febre Suína Clássica/fisiologia , Clatrina/metabolismo , Dinaminas/metabolismo , Internalização do Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Endocitose , Células Epiteliais/virologia , Concentração de Íons de Hidrogênio , Suínos , proteínas de unión al GTP Rab7
18.
Int J Cardiovasc Imaging ; 29(4): 765-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23124516

RESUMO

To compare the diagnostic accuracy of various cardiovascular screening tools in asymptomatic subjects with intermediate-to-high risk Framingham risk score (FRS). In addition, we also investigated whether carotid artery study could further add incremental value beyond metabolic abnormality and inflammatory marker in this issue. 1,200 asymptomatic subjects who underwent health evaluation were recruited in our study. FRS was calculated in all participants based on clinical variables, body surface electrocardiography, medical histories, and life styles. Metabolic scores, serum high-sensitivity C reactive protein (hs-CRP) level and carotid artery study in assessing intima-media-thickness (CIMT) and plaque were all obtained and compared to FRS. Comparison of diagnostic accuracy was then conducted among these different tools aiming at a more efficient screen in identifying intermediate-to-high FRS. Of all, 1,101 participants (mean age 50.6 ± 10.4, 38.6 % women) were finally entered in our study after exclusion of known cardiovascular diseases. By utilizing common carotid IMT (CCIMT) equal or larger than 1 mm, best specificity (98.27, 95 % CI 97.24-98.99) was achieved in identifying intermediate-to-high FRS subject. The most optimal cut-off in identifying intermediate-to-high FRS for metabolic scores, hs-CRP and CCIMT was 2, 0.101 mg/dL and 0.65 mm, respectively. Both receiver operating characteristic curve and likelihood ratio tests showed that information provided by carotid artery study further showed significant incremental value when superimposed on metabolic scores and hs-CRP (all p < 0.05) in screening intermediate-to-high FRS subjects. Though diagnostic accuracy may differ to some degree by using different cut-off values, a low metabolic score seemed to have the best sensitivity with abnormal CCIMT yielded highest specificity in screening a subject with future cardiovascular risks. Carotid artery study added significant clinical incremental value in discriminating projected risk beyond metabolic scores and hs-CRP.


Assuntos
Proteína C-Reativa/análise , Doenças das Artérias Carótidas/diagnóstico , Artéria Carótida Primitiva/diagnóstico por imagem , Espessura Intima-Media Carotídea , Mediadores da Inflamação/sangue , Programas de Rastreamento/métodos , Adulto , Idoso , Área Sob a Curva , Doenças Assintomáticas , Biomarcadores/sangue , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Humanos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica , Valor Preditivo dos Testes , Curva ROC , Medição de Risco , Fatores de Risco , Taiwan
19.
Am J Cardiol ; 110(7): 993-1000, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728006

RESUMO

Carbohydrate antigen-125 (CA-125) has recently been reported to correlate with the severity of systolic heart failure (HF). However, the association between this marker and HF with preserved ejection fraction (HFpEF) remains elusive. We studied 158 consecutive women with preserved ejection fraction, who were categorized into 3 groups: those with HF (HFpEF group, n = 35), those with ≥1 cardiovascular risk (at-risk group, n = 78), and 45 normal controls (n = 45). All subjects underwent echocardiography with serum N-terminal pro-brain type natriuretic peptide (NT-ProBNP), CA-125 level, and other tumor markers obtained. HFpEF group showed significantly greater baseline levels of CA-125 and NT-ProBNP than both normal and at-risk groups (p <0.05). In addition, the serum CA-125 level correlated with the maximum left atrial volume (r = 0.24, p = 0.002). During a mean follow-up of 828.1 days (interquartile range 38 to 1,504.5), those with CA-125 levels >17.29 U/ml had a greatest incidence of HF hospitalization (hazard ratio 6.2, p <0.01) and remained an independent prognosticator in the multivariate Cox models. CA-125 superimposed on NT-ProBNP successfully expanded the receiver operating characteristic curve further in predicting HF hospitalization (area under curve 0.72 to 0.82, c-statistic 0.0049). In conclusion, serum CA-125 might serve as a novel biomarker for HFpEF and predicting HF hospitalization in women.


Assuntos
Função do Átrio Esquerdo/fisiologia , Antígeno Ca-125/sangue , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/fisiologia , Função Ventricular Esquerda , Adulto , Idoso , Biomarcadores/sangue , Ecocardiografia , Feminino , Seguimentos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Humanos , Imunoensaio , Pessoa de Meia-Idade , Prognóstico , Pressão Propulsora Pulmonar , Estudos Retrospectivos , Adulto Jovem
20.
J Biol Chem ; 287(12): 9259-68, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22303013

RESUMO

The mechanism by which inclusion bodies form is still not well understood, partly because the dynamic processes of the inclusion body formation and its solubilization have hardly been investigated at an individual cell level, and so the important detailed information has not been acquired for the mechanism. In this study, we investigated the in vivo folding and aggregation of Aspergillus phoenicis ß-D-galactosidase fused to a red fluorescence protein in individual Escherichia coli cells. The folding status and expression level of the recombinant ß-D-galactosidase at an individual cell level was analyzed by flow cytometry in combination with transmission electron microscopy and Western blotting. We found that individual E. coli cells fell into two distinct states, one containing only inclusion bodies accompanied with low galactosidase activity and the other containing the recombinant soluble galactosidase accompanied with high galactosidase activity. The majority of the E. coli cells in the later state possessed no inclusion bodies. The two states of the cells were shifted to a cell state with high enzyme activity by culturing the cells in isopropyl 1-thio-ß-D-galactopyranoside-free medium after an initial protein expression induction in isopropyl 1-thio-ß-D-galactopyranoside-containing medium. This shift of the cell population status took place without the level change of the ß-D-galactosidase protein in individual cells, indicating that the factor(s) besides the crowdedness of the recombinant protein play a major role in the cell state transition. These results shed new light on the mechanism of inclusion body formation and will facilitate the development of new strategies in improving recombinant protein quality.


Assuntos
Aspergillus/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/genética , Expressão Gênica , beta-Galactosidase/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , beta-Galactosidase/química , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA