Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1271831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550567

RESUMO

Riemannian geometry-based classification (RGBC) gained popularity in the field of brain-computer interfaces (BCIs) lately, due to its ability to deal with non-stationarities arising in electroencephalography (EEG) data. Domain adaptation, however, is most often performed on sample covariance matrices (SCMs) obtained from EEG data, and thus might not fully account for components affecting covariance estimation itself, such as regional trends. Detrended cross-correlation analysis (DCCA) can be utilized to estimate the covariance structure of such signals, yet it is computationally expensive in its original form. A recently proposed online implementation of DCCA, however, allows for its fast computation and thus makes it possible to employ DCCA in real-time applications. In this study we propose to replace the SCM with the DCCA matrix as input to RGBC and assess its effect on offline and online BCI performance. First we evaluated the proposed decoding pipeline offline on previously recorded EEG data from 18 individuals performing left and right hand motor imagery (MI), and benchmarked it against vanilla RGBC and popular MI-detection approaches. Subsequently, we recruited eight participants (with previous BCI experience) who operated an MI-based BCI (MI-BCI) online using the DCCA-enhanced Riemannian decoder. Finally, we tested the proposed method on a public, multi-class MI-BCI dataset. During offline evaluations the DCCA-based decoder consistently and significantly outperformed the other approaches. Online evaluation confirmed that the DCCA matrix could be computed in real-time even for 22-channel EEG, as well as subjects could control the MI-BCI with high command delivery (normalized Cohen's κ: 0.7409 ± 0.1515) and sample-wise MI detection (normalized Cohen's κ: 0.5200 ± 0.1610). Post-hoc analysis indicated characteristic connectivity patterns under both MI conditions, with stronger connectivity in the hemisphere contralateral to the MI task. Additionally, fractal scaling exponent of neural activity was found increased in the contralateral compared to the ipsilateral motor cortices (C4 and C3 for left and right MI, respectively) in both classes. Combining DCCA with Riemannian geometry-based decoding yields a robust and effective decoder, that not only improves upon the SCM-based approach but can also provide relevant information on the neurophysiological processes behind MI.

2.
Geroscience ; 46(1): 713-736, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38117421

RESUMO

Analysis of brain functional connectivity (FC) could provide insight in how and why cognitive functions decline even in healthy aging (HA). Despite FC being established as fluctuating over time even in the resting state (RS), dynamic functional connectivity (DFC) studies involving healthy elderly individuals and assessing how these patterns relate to cognitive performance are yet scarce. In our recent study we showed that fractal temporal scaling of functional connections in RS is not only reduced in HA, but also predicts increased response latency and reduced task solving accuracy. However, in that work we did not address changes in the dynamics of fractal connectivity (FrC) strength itself and its plausible relationship with mental capabilities. Therefore, here we analyzed RS electroencephalography recordings of the same subject cohort as previously, consisting of 24 young and 19 healthy elderly individuals, who also completed 7 different cognitive tasks after data collection. Dynamic fractal connectivity (dFrC) analysis was carried out via sliding-window detrended cross-correlation analysis (DCCA). A machine learning method based on recursive feature elimination was employed to select the subset of connections most discriminative between the two age groups, identifying 56 connections that allowed for classifying participants with an accuracy surpassing 92%. Mean of DCCA was found generally increased, while temporal variability of FrC decreased in the elderly when compared to the young group. Finally, dFrC indices expressed an elaborate pattern of associations-assessed via Spearman correlation-with cognitive performance scores in both groups, linking fractal connectivity strength and variance to increased response latency and reduced accuracy in the elderly population. Our results provide further support for the relevance of FrC dynamics in understanding age-related cognitive decline and might help to identify potential targets for future intervention strategies.


Assuntos
Fractais , Envelhecimento Saudável , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo , Cognição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA