RESUMO
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Assuntos
Redes Reguladoras de Genes , Cabras , Hipotálamo , RNA Circular , Reprodução , Animais , Cabras/genética , RNA Circular/genética , Hipotálamo/metabolismo , Feminino , Reprodução/genética , Perfilação da Expressão Gênica , Ontologia Genética , Transcriptoma , Regulação da Expressão GênicaRESUMO
Silage is a well-established method for preserving feed. However, the preparation process still poses several potential microbial hazards. Lactic acid bacteria exhibiting a biofilm phenotype are considered the most advanced 'fourth-generation probiotics' due to their significant potential in enhancing fermentation quality. In this study, a strain of high-biofilm-producing lactic acid bacteria (HBP-LAB) was successfully isolated from silage samples using the crystal violet method and designated as Lactiplantibacillus plantarum S23Y. This strain was subsequently used as an inoculant in corn straw for experimental purposes. The results indicated that it effectively reduced dry matter loss caused by microorganisms, thereby enhancing the retention of dry matter in silage. Following aerobic exposure, this strain was able to maintain the population of Lactobacillus and the concentration of lactic acid, which significantly decreased the likelihood of yeast-induced aerobic spoilage and improved the aerobic stability of the silage. However, it is important to note that this HBP-LAB did not have a significant impact on antibiotic resistance genes (ARGs) or mobile genetic elements (MGEs) in the silage. In conclusion, using S23Y as a representative strain, we have demonstrated that HBP-LAB can enhance the fermentation quality of silage to a certain extent and mitigate the detrimental effects of microorganisms. The findings of this study provide valuable insights for the application of lactic acid bacteria with a biofilm phenotype in silage fermentation.
RESUMO
BACKGROUND: Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS: This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS: There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION: Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.
RESUMO
The reproductive performance of goats significantly influences breeding efficiency and economic returns, with litter size serving as a comprehensive indicator. Despite this, research on the genetic control of litter size remains limited. Therefore, we aimed to explore the candidate genes affecting fecundity and compared the whole-genome sequences (WGS) of 15 high-litter (HL) and 15 low-litter (LL) size in Chuanzhong black goats. Then genetic diversity and genomic variation patterns were analyzed by phylogenetic, principal component and population genetic structure analysis, it was found that HL and LL subpopulations diverged. Population evolutionary selection elimination analysis was performed by Fst and θπ resulted in 506 genes were annotated in HL and 528 genes in LL. These genes were mainly related to Hippo signaling pathway, G protein-coupled signaling pathway, G protein-coupled receptor activity, cell surface receptor signaling pathway, gonadal and reproductive structure development. According to the significantly selected genomic regions and important pathways, we found that the g.89172108T > G variant locus in the exon of the AMH gene was significantly associated with litter size (P < 0.05), which could be used as an auxiliary selection gene for the high fertility of Chuanzhong black Goat.
RESUMO
The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < 0.05) and subsequent blastocyst rate (p < 0.05) of the low-concentration 1 and 5 µmol/L MitoQ treatment group were increased. The level of ROS (p < 0.05) in the MitoQ treatment group was decreased in comparison to the control group. Additionally, the level of GSH, MMP, ATP, and mt-DNA in the MitoQ treatment group was increased (p < 0.05) in comparison to the control group. The expression level of BAX was decreased (p < 0.05) in the MitoQ treatment group, and the BCL2, DNM1, Mfn2, SOD, and CAT were increased (p < 0.05). In conclusion, MitoQ improved mitochondrial dysfunction, increased mitochondrial activity during IVM, and reduced oxidative stress, resulting in increased IVM rates and subsequent embryonic development from culled cows.
RESUMO
BARKGROUND: Circular RNAs (circRNAs) play important regulatory roles in a variety of biological processes in mammals. Multiple birth-traits in goats are affected by several factors, but the expression and function of circRNAs in follicular development of goats are not clear. In this study, we aimed to investigate the possible regulatory mechanisms of circRNA and collected five groups of large follicles (Follicle diameter > 6 mm) and small follicles (1 mm < Follicle diameter < 3 mm) from Leizhou goats in estrus for RNA sequencing. RESULTS: RNA sequencing showed that 152 circRNAs were differentially expressed in small and large follicles. Among them, 101 circRNAs were up-regulated in large follicles and 51 circRNAs were up-regulated in small follicles. GO and KEGG enrichment analyses showed that parental genes of the differential circRNAs were significantly enriched in important pathways, such as ovarian steroidogenesis, GnRH signaling pathway, animal autophagy and oxytocin signalling pathway. BioSignal analysis revealed that 152 differentially expressed circRNAs could target 91 differential miRNAs including miR-101 family (chi-miR-101-3p, chi-miR-101-5p), miR-202 family (chi-miR-202-5p, chi-miR-202-3p),60 circRNAs with translation potential. Based on the predicted sequencing results, the ceRNA networks chicirc_008762/chi-miR-338-3p/ARHGAP18 and chicirc_040444/chi-miR-338-3p/STAR were constructed in this study. Importantly, the new gene circCFAP20DC was first discovered in goats. The EDU assay and flow cytometry results indicated that circCFAP20DC enhanced the proliferation of follicular granulosa cells(GCs). Real-time quantitative PCR and western blotting assays showed that circCFAP20DC activated the Retinoblastoma(RB) pathway and promoted the progression of granulosa cells from G1 to S phase. CONCLUSION: Differential circRNAs in goat size follicles may have important biological functions for follicular development. The novel gene circCFAP20DC activates the RB pathway, promoting the progression of GCs from G1 to S phase. This, in turn, enhances the proliferation of follicular GCs in goats.
Assuntos
Cabras , Folículo Ovariano , RNA Circular , Animais , Cabras/genética , Feminino , RNA Circular/genética , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , MicroRNAs/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência de RNARESUMO
Bovine mastitis is an inflammatory disease of the mammary glands, and its pathogenesis and diagnosis are complicated. Through qualitative and quantitative analysis of small-molecule metabolites, the metabolomics technique plays an important role in finding biomarkers and studying the metabolic mechanism of bovine mastitis. Therefore, this paper reviews the predictive and diagnostic biomarkers of bovine mastitis that have been identified using metabolomics techniques and that are present in samples such as milk, blood, urine, rumen fluid, feces, and mammary tissue. In addition, the metabolic pathways of mastitis-related biomarkers in milk and blood were analyzed; it was found that the tricarboxylic acid (TCA) cycle was the most significant (FDR = 0.0015767) pathway in milk fluid, and glyoxylate and dicarboxylate metabolism was the most significant (FDR = 0.0081994) pathway in blood. The purpose of this review is to provide useful information for the prediction and early diagnosis of bovine mastitis.
RESUMO
Diabetic wounds are among the most common complications of diabetes mellitus and their healing process can be delayed due to persistent inflammatory reactions, bacterial infections, damaged vascularization and impaired cell proliferation, which casts a blight on patients'health and quality of life. Therefore, new strategies to accelerate diabetic wound healing are being positively explored. Exosomes derived from mesenchymal stem cells (MSC-Exos) can inherit the therapeutic and reparative abilities of stem cells and play a crucial role in diabetic wound healing. However, poor targeting, low concentrations of therapeutic molecules, easy removal from wounds and limited yield of MSC-Exos are challenging for clinical applications. Bioengineering techniques have recently gained attention for their ability to enhance the efficacy and yield of MSC-Exos. In this review, we summarise the role of MSC-Exos in diabetic wound healing and focus on three bioengineering strategies, namely, parental MSC-Exos engineering, direct MSC-Exos engineering and MSC-Exos combined with biomaterials. Furthermore, the application of bioengineered MSC-Exos in diabetic wound healing is reviewed. Finally, we discuss the future prospects of bioengineered MSC-Exos, providing new insights into the exploration of therapeutic strategies.
RESUMO
Litter size is a crucial quantitative trait in animals, closely linked to follicular development. Circular RNA (circRNA), a type of single-stranded closed-loop endogenous RNA with stable expression, plays pivotal roles in various biological processes, yet its function in goat follicular development remains unclear. In this study, we collected large (follicle diameter > 3 mm) and small (1 mm < follicle diameter < 3 mm) follicles from black goats in the Chuanzhong region for circRNA sequencing, with the aim of elucidating the functional circRNAs that influence follicle development in goats. Differential analysis revealed that 17 circRNAs were upregulated in large follicles, and 28 circRNAs were upregulated in small follicles. Functional enrichment analysis revealed significant enrichment of pathways related to reproduction, including cellular response to follicle-stimulating hormone stimulus, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Notch signaling pathway. Based on the ceRNA mechanism, 45 differentially expressed circRNAs were found to target and bind a total of 418 miRNAs, and an intercalation network including miR-324-3p (circRNA2497, circRNA5650), miR-202-5p (circRNA3333, circRNA5501), and miR-493-3p (circRNA4995, circRNA5508) was constructed. In addition, conservation analysis revealed that 2,239 circRNAs were conserved between goats and humans. Prediction of translation potential revealed that 154 circRNAs may potentially utilize both N6-methyladenosine (m6A) and internal ribosome entry site (IRES) translation mechanisms. Furthermore, the differential expression and circularization cleavage sites of five circRNAs were validated through RT-qPCR and DNA sequencing. Our study constructed a circRNA map in goat follicle development, offering a theoretical foundation for enhancing goat reproductive performance.
Assuntos
Cabras , Folículo Ovariano , RNA Circular , Animais , Cabras/genética , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Folículo Ovariano/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais , Redes Reguladoras de GenesRESUMO
Purpose: Hypertrophic scarring (HS) is commonly described as an abnormal post-traumatic tissue repair characterized by excessive hypercellularity and extracellular matrix (ECM) deposition. Mounting evidence suggests that MALAT1 is maladjusted in many fibrotic diseases, but its contribution to HS progression remains poorly understood. Hence, we sought to elucidate the fundamental role of MALAT1 in HS. Methods: The expression of MALAT1, miR-29a-3p, and Smurf2 in skin tissues and fibroblasts was assessed by RT-qPCR and Western blotting. Furthermore, lentiviruses, RNAi, or plasmids were utilized to transfect hypertrophic scar fibroblasts (HSFs) for gene overexpression or downregulation. The biological behaviors of HSFs were quantified by the CCK-8 assay, wound healing assay, transwell assay, and flow cytometry. Mechanistically, bioinformatics analysis, dual-luciferase reporter assays, and rescue experiments were performed to verify the relationship between miR-29a-3p and MALAT1 or Smurf2. Results: Our data indicate that MALAT1, Smurf2 were overexpressed while miR-29a-3p was suppressed in HS tissues and fibroblasts. Downregulation of MALAT1 may lead to decreased proliferation, migration, and invasion of fibroblasts, accompanied by enhanced apoptosis, reduced TGF-ß signal transduction, and ECM accumulation in HSFs, by enhancing miR-29a-3p and suppressing Smurf2 expression. Mechanistically, MALAT1 acted as a sponge for miR-29a-3p, while miR-29a-3p directly targeted Smurf2. More importantly, rescue experiments suggested that MALAT1 downregulation induced impact on the proliferation, migration, and invasion of HSFs could be partially overturned through miR-29a-3p knockdown or Smurf2 overexpression. Conclusion: MALAT1 knockdown inhibits the proliferation, migration, invasion, and collagen deposition of HSFs via targeting the miR-29a-3p/Smurf2 axis, which may reveal a promising therapeutic exploitable vulnerability to HS.
RESUMO
This experiment aimed to investigate the impact of malic acid (MA) and citric acid (CA) on the nutritional composition, fermentation quality, rumen degradation rate, and microbial diversity of a mixture of apple pomace and corn protein powder during ensiling. The experiment used apple pomace and corn protein powder as raw materials, with four groups: control group (CON), malic acid treatment group (MA, 10 g/kg), citric acid treatment group (CA, 10 g/kg), and citric acid + malic acid treatment group (MA, 10 g/kg + CA, 10 g/kg). Each group has 3 replicates, with 2 repetitions in parallel, subjected to mixed ensiling for 60 days. The results indicated: (1) Compared to the CON group, the crude protein content significantly increased in the MA, CA, and MA + CA groups (p < 0.05), with the highest content observed in the MA + CA group. The addition of MA and CA effectively reduced the water-soluble carbohydrate (WSC) content (p < 0.05). Simultaneously, the CA group showed a decreasing trend in NDFom and hemicellulose content (p = 0.08; p = 0.09). (2) Compared to the CON group, the pH significantly decreased in the MA, CA, and MA + CA groups (p < 0.01), and the three treatment groups exhibited a significant increase in lactic acid and acetic acid content (p < 0.01). The quantity of lactic acid bacteria increased significantly (p < 0.01), with the MA + CA group showing a more significant increase than the MA and CA groups (p < 0.05). (3) Compared to the CON group, the in situ dry matter disappearance (ISDMD) significantly increased in the MA, CA, and MA + CA groups (p < 0.05). All three treatment groups showed highly significant differences in in situ crude protein disappearance (ISCPD) compared to the CON group (p < 0.01). (4) Good's Coverage for all experimental groups was greater than 0.99, meeting the conditions for subsequent sequencing. Compared to the CON group, the Shannon index significantly increased in the CA group (p < 0.01), and the Simpson index increased significantly in the MA group (p < 0.05). However, there was no significant difference in the Chao index among the three treatment groups and the CON group (p > 0.05). At the genus level, the abundance of Lentilactobacillus in the MA, CA, and MA + CA groups was significantly higher than in the control group (p < 0.05). PICRUSt prediction results indicated that the metabolic functional microbial groups in the CA and MA treatment groups were significantly higher than in the CON group (p < 0.05), suggesting that the addition of MA or CA could reduce the loss of nutritional components such as protein and carbohydrates in mixed ensilage. In conclusion, the addition of malic acid and citric acid to a mixture of apple pomace and corn protein powder during ensiling reduces nutritional losses, improves fermentation quality and rumen degradation rate, enhances the diversity of the microbial community in ensiled feed, and improves microbial structure. The combined addition of malic acid and citric acid demonstrates a superior effect.
RESUMO
This study investigates the effects of varying energy levels in diets on Black Angus steers, focusing on growth performance, muscle composition, rumen microbial community, and their interrelationships. Twenty-seven Black Angus steers, aged approximately 22 months and weighing 520 ± 40 kilograms, were randomly divided into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). Each group consisted of nine individuals. The steers were fed diets with energy levels of 6.657 MJ/kg (LE), 7.323 MJ/kg (ME), and 7.990 MJ/kg (HE) following a 14-day pre-feeding period, with a subsequent 90-day main experimental phase. After the 90-day feeding period, both the HE and ME groups exhibited significantly higher average daily weight gain (ADG) compared to the LE group (p < 0.05). The feed-to-weight ratios were lower in the HE and ME groups compared to the LE group (p < 0.05). The HE group showed significantly higher crude fat content in the longissimus dorsi muscle compared to the LE group (p < 0.05), with total fatty acid content in the muscle surpassing that in the ME and LE groups (p < 0.05). As dietary energy levels increased, the diversity of the rumen microbial community decreased (p < 0.05), and significant differences in bacterial community structure were observed between the LE and HE groups (p < 0.05). The results suggest that higher dietary energy levels enhance growth performance and alter muscle composition in Black Angus steers, while also influencing the rumen microbial community. This study contributes to understanding optimal dietary strategies for finishing Angus cattle to improve beef quality, economic returns, and the development of standardized production procedures.
RESUMO
The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.
Assuntos
Perfilação da Expressão Gênica , Cabras , MicroRNAs , Músculo Esquelético , RNA Mensageiro , Animais , Cabras/genética , Cabras/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Regulação da Expressão Gênica no Desenvolvimento , TranscriptomaRESUMO
Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.
Assuntos
Cicatriz Hipertrófica , Humanos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Lisina/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-TraducionalRESUMO
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
RESUMO
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.
Assuntos
MicroRNAs , Receptores de Grelina , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação , MicroRNAs/genética , Apoptose/genética , Proliferação de Células/genética , Luciferases , Linhagem Celular TumoralRESUMO
Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.
Assuntos
Complicações do Diabetes , Exossomos , Hidrogéis , Células-Tronco Mesenquimais , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Exossomos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/patologia , Pele/efeitos dos fármacos , Pele/lesões , Humanos , Sobrevivência Celular/efeitos dos fármacos , Bactérias/efeitos dos fármacosRESUMO
Background: Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing. Methods: We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an in vivo mouse model of diabetes (db/db) to assess wound healing, as well as the human keratinocyte HaCaT cell line. In the methodology, the authors utilized an array of approaches that included electron microscopy, small interfering RNA (siRNA) studies, RNA in situ hybridization, quantitative real-time reverse transcription PCR (qRT-PCR), the isolation, sequencing and differential expression of miRNAs, as well as the use of miR-4645-5p-specific knockdown with an inhibitor. Results: Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in 'autophagy' and 'process utilizing autophagic mechanism' in the 'biological process' category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy. Conclusions: Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. Collectively, the findings could aid in the development of a novel therapeutic strategy for diabetic wounds.
RESUMO
BACKGROUND: Patients with extensive burns are critically ill and have long treatment periods. Length of stay (LOS) is a good measure for assessing treatment. This study sought to identify predictors of prolonged LOS in patients with extensive burns (≥50% TBSA). METHODS: This retrospective multicenter cohort study included adults aged ≥ 18 years who survived extensive burns in three burn centers in Eastern China between January 2016 and June 2022. Epidemiological, demographic and clinical outcomes data were extracted from electronic medical records and compared between patients with/without prolonged LOS, which was defined as LOS greater than the median. Logistic regression analysis was used to identify predictors of prolonged LOS. RESULTS: The study sample included 321 patients, of whom 156 (48.6%) had an LOS of 58 days (IQR 41.0-77.0). Univariate regression analysis showed that increased total burn area and increased full-thickness burn area; electrical, chemical and other burns; increased erythrocytes, leukocytes, platelets or serum creatinine within 24 h of admission; concomitant inhalation injury, pulmonary edema, sepsis, bloodstream infection, wound infection, pulmonary infection, urinary tract infection, or HB < 70 g/L during hospitalization were associated with prolonged LOS in patients with extensive burns. Increased number of surgical operations, mechanical ventilation and renal replacement therapy were also associated with prolonged LOS (P < 0.05 or P < 0.001). Multivariate regression analysis revealed that increased total burn area (ratio 1.032, 95%CI 1.01-1.055; P = 0.004), electrical and chemical or other burns (3.282, 1.335-8.073; P = 0.01), development of wound infection (2.653 1.285-5.481; P = 0.008) and increased number of operative procedures (1.714, 1.388-2.116, P < 0.001) were significant predictors. CONCLUSIONS: Increased area of full-thickness burn,occurrence of electrical and chemical or other burns,occurrence of wound infection and increased number of surgeries are the best predictors of prolonged LOS in patients with extensive burns. Clarifying relevant predictors of burn patients' LOS provides a reliable reference for clinical treatment.