Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant J ; 118(6): 2108-2123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526880

RESUMO

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.


Assuntos
Alelos , Oryza , Melhoramento Vegetal , Proteínas de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal/métodos , Fenótipo , Genótipo , Fotoperíodo , Genes de Plantas/genética , Hibridização Genética
2.
BMC Plant Biol ; 23(1): 332, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349684

RESUMO

BACKGROUND: Bacterial leaf blight (BLB) is a highly destructive disease, causing significant yield losses in rice (Oryza sativa). Genetic variation is contemplated as the most effective measure for inducing resistance in plants. The mutant line T1247 derived from R3550 (BLB susceptible) was highly resistant to BLB. Therefore, by utilizing this valuable source, we employed bulk segregant analysis (BSA) and transcriptome profiling to identify the genetic basis of BLB resistance in T1247. RESULTS: The differential subtraction method in BSA identified a quantitative trait locus (QTL) on chromosome 11 spanning a 27-27.45 Mb region with 33 genes and 4 differentially expressed genes (DEGs). Four DEGs (P < 0.01) with three putative candidate genes, OsR498G1120557200, OsR498G1120555700, and OsR498G1120563600,0.01 in the QTL region were identified with specific regulation as a response to BLB inoculation. Moreover, transcriptome profiling identified 37 resistance analogs genes displaying differential regulation. CONCLUSIONS: Our study provides a substantial addition to the available information regarding QTLs associated with BLB, and further functional verification of identified candidate genes can broaden the scope of understanding the BLB resistance mechanism in rice.


Assuntos
Oryza , Oryza/genética , Oryza/microbiologia , Transcriptoma , Locos de Características Quantitativas/genética , Perfilação da Expressão Gênica , Metabolômica , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Front Plant Sci ; 14: 1184276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123865

RESUMO

Grain chalkiness is the main factor determining the market value of rice. Reducing chalkiness is an important breeding goal for genetic improvement of high quality rice. Identification of QTLs or genes controlling chalkiness is the prerequisite for molecular breeding in rice. Here, we conducted a genome-wide association study to identify QTLs associated with grain chalkiness including percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC) in 450 rice accessions consisting of 300 indica and 150 japonica rice in two environments. A total of 34 QTLs were identified, including 14 QTLs for PGWC and 20 QTLs for DEC. Among them, seven QTLs were commonly identified in two environments, and eight QTLs were simultaneously related to two traits. Based on the haplotype analysis, LD decay analysis, RNA-sequencing, qRT-PCR confirmation and haplotype comparisons, four genes (LOC_Os10g36170, LOC_Os10g36260, LOC_Os10g36340 and LOC_Os10g36610) were considered as the candidate genes for qDEC-10c1w,2wj , which could be identified in both environments and had the most significant p-value among the newly identified QTLs. These results provided new insight into the genetic basis of grain chalkiness and gene resources for improving quality by molecular breeding in rice.

4.
Plant J ; 115(1): 139-154, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36995901

RESUMO

Heterosis has been widely used in multiple crops. However, the molecular mechanism and prediction of heterosis remains elusive. We generated five F1 hybrids [four showing better-parent heterosis (BPH) and one showing mid-parent heterosis], and performed the transcriptomic and methylomic analyses to identify the candidate genes for BPH and explore the molecular mechanism of heterosis and the potential predictors for heterosis. Transcriptomic results showed that most of the differentially expressed genes shared in the four better-parent hybrids were significantly enriched into the terms of molecular function, and the additive and dominant effects played crucial roles for BPH. DNA methylation level, especially in CG context, significantly and positively correlated with grain yield per plant. The ratios of differentially methylated regions in CG context in exons to transcription start sites between the parents exhibited significantly negative correlation with the heterosis levels of their hybrids, as was further confirmed in 24 pairwise comparisons of other rice lines, implying that this ratio could be a feasible predictor for heterosis level, and this ratio of less than 5 between parents in early growth stages might be a critical index for judging that their F1 hybrids would show BPH. Additionally, we identified some important genes showing differential expression and methylation, such as OsDCL2, Pi5, DTH2, DTH8, Hd1 and GLW7 in the four better-parent hybrids as the candidate genes for BPH. Our findings helped shed more light on the molecular mechanism and heterosis prediction.


Assuntos
Oryza , Humanos , Perfilação da Expressão Gênica , Vigor Híbrido/genética , Oryza/genética , Transcriptoma/genética
5.
Plant Physiol ; 192(2): 1498-1516, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36823690

RESUMO

Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.


Assuntos
Arabidopsis , Oryza , Monoéster Fosfórico Hidrolases/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Raízes de Plantas/metabolismo
6.
J Psycholinguist Res ; 52(1): 283-305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527325

RESUMO

Via two reading experiments, this exploratory study examined the effects of over-and under-specified linguistic input on L2 online processing of Chinese referring expressions (REs). In each experiment, a group of advanced L2 Chinese speakers (all with Uyghurs as L1) and a control group of native Chinese speakers read 48 sets of 4 sentence pairs with each set including one sentence pair containing referential underspecification (ambiguity) and one pair containing overspecification (redundancy). An analysis of the two groups' reaction time (RT) using mixed-effects linear modelling reveals that underspecification had no effect on native Chinese speakers in both experiments, and overspecification also had no effect in the form of a redundant size noun modifier in Experiment 1 but showed a facilitating effect in the form of a color noun modifier in Experiment 2. In contrast, L2 Chinese speakers were significantly disrupted by underspecification in both experiments but not by overspecification. The results seem to support the hypothesis that L2 processing is constraint-based. Tentative research and pedagogical implications of the findings are discussed.


Assuntos
Multilinguismo , Humanos , Idioma , Linguística , Tempo de Reação , Leitura
7.
Front Genet ; 13: 1039677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437935

RESUMO

Rice originated in tropical and subtropical regions and is distributed worldwide. Low temperature is one of the most critical abiotic stresses affecting grain yield and geographical distribution of rice. It is vital to elucidate the molecular mechanism of chilling tolerance in rice for ensuring cereals production. Previously we isolated the domestication-related gene NOG1 which affects rice grain number and yield. In this study, we specified that rice varieties harboring high-yielding NOG1 allele are more distributed in low-latitude regions. Additionally, we observed NOG1 influences the chilling tolerance of rice. Through genome-wide transcriptional analysis after cold treatment at 10°C, there were 717 differentially expressed genes (DEGs) in nog1 near-isogenic lines compared with the control Guichao 2, including 432 up-regulated DEGs and 284 down-regulated DEGs. Gene ontology annotations and KEGG enrichment analysis of DEGs showed that various biological processes and signaling pathways were related to cold stress, such as lipid metabolism and genetic information processing. These results provide new insights into the mechanism of chilling tolerance in rice and the molecular basis of environmental adaptation during rice domestication.

8.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365290

RESUMO

The head milled rice rate (HMRR) is the most important trait of milling quality, which affects the final yield and quality of rice. However, few genes related to HMRR have been identified and the regulatory mechanism of HMRR remains elusive. In this study, we performed a comparative analysis integrating the transcriptome sequencing of developing seeds at the grain-filling stage and a metabolome analysis of brown rice between two groups of accessions with contrasting performances in HMRR. A total of 768 differentially expressed genes (DEGs) were identified between the transcriptome profiles of low-HMRR and high-HMRR accessions. In comparison to the high-HMRR accessions, 655 DEGs were up-regulated in the low-HMRR accessions, which was 4.79 folds higher than the number of down-regulated genes. These up-regulated DEGs were enriched in various metabolic and biosynthetic processes, oxidation reduction, phosphorylation, ion transport and ATP-related processes. However, the 113 down-regulated DEGs in the low-HMRR accessions were concentrated in carbohydrate metabolic processes, cell-death-related processes and defense response. Among the 30 differential metabolites, 20 and 10 metabolites were down-/up-regulated, respectively, in the accessions with low HMRR. In addition, 10 differential metabolites, including five metabolites of the shikimate pathway and five metabolites of the pyruvate pathway, were integrated into two separate pathways, starting from sucrose. Our global analysis of HMRR provides an invaluable resource for a better understanding of the molecular mechanism underlying the genetic regulation of HMRR.

9.
Front Psychol ; 13: 952044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992489

RESUMO

This research investigates Chinese EFL students' flow experience in academic writing and its effect on students' writing performance. The research consists of two studies: (1) a preliminary study involving a survey of 162 college students immediately after their completion of a short English essay to examine whether and how intensely they experienced flow during their writing and whether their perceived levels of challenge of the writing task and their writing skills affected their flow experience, and (2) a main study including a survey of 216 different students at the end of a semester-long writing course to ascertain how frequently these students experienced flow during the course, whether their intrinsic writing motivation and attention control ability were significantly correlated with their flow experience, and whether their flow frequency had an effect on their performance in the writing course. Results of statistical tests (including Class Factor Analyses and regression analyses) of the data in the preliminary study revealed that a large majority (76%) of the students experienced a certain level of flow in their writing and their perceived levels of writing skills had a significant influence on their flow experience. The statistical test results of the main study indicated that (1) 66.4% of the students experienced flow with various frequency levels, while 33.6% of the students rarely or never experienced flow, (2) students' level of motivation and attention control were significantly correlated with their level of flow frequency, and (3) students' flow frequency had a significant influence on their writing course scores. Research and pedagogical implications of the study are also discussed.

10.
Front Genet ; 13: 811124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154278

RESUMO

Identification of the right parental combinations to maximize heterosis is the major goal of hybrid breeding, which could be achieved through identification of heterotic groups. The main objective of this study was to identify promising heterotic groups for future rice breeding programs. A collection of 359 rice genotypes of diverse origins of China and abroad, composed of inbreds, maintainers, restorers, and temperature-sensitive genic male sterile (TGMS) lines were genotyped using 10K SNP chips. The SNP data set was subjected to genomic analyses for estimation of genetic divergence and diversity. Significant variations were observed in the germplasm with the identification of six different genetic groups. These lines were assigned to the genetic groups independent of their origin. Taking an account of commercially used heterotic groups present in each cluster, three cytoplasmic male sterile (CMS) lines and 14 inbred and restorer lines with moderate to high genetic distances selected from five heterotic patterns were crossed and obtained 42 F1 hybrids. A total of 14 hybrids were found with significant maximum mid- and better-parent heterosis, namely, TaifengA × Guang122, TaifengA × Wushansimiao, and TaifengA × Minghui63 for earliness; Guang8A × Huazhan for dwarf stature; and Guang8A × Huanghuzhan-1, TaifengA × Yuexiangzhan, Guang8A × Minhui3301, TianfengA × Guang122, Guang8A × Yahui2115, TianfengA × Huanghuazhan, TianfengA × Minghui63, TianfengA × Minhui3301, TaifengA × Gui99, and Guang8A × Yuenongsimiao for yield and yield-related traits. Mid-parent and better-parent heterotic F1 hybrids were in positive correlation with the genetic distances as that manifested by commercially used heterotic groups, encouraging the use of genotypic data for identification of heterotic groups. Our study provides an informative strategy for the development of early maturing, lodging resistant and high-yielding commercial hybrids and cultivars in future heterosis breeding programs.

11.
Mol Plant Pathol ; 22(12): 1587-1598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453407

RESUMO

Rice sheath blight, caused by the soilborne fungus Rhizoctonia solani, causes severe yield losses worldwide. Elucidation of the pathogenic mechanism of R. solani is highly desired. However, the lack of a stable genetic transformation system has made it challenging to examine genes' functions in this fungus. Here, we present functional validation of pathogenicity genes in the rice sheath blight pathogen R. solani by a newly established tobacco rattle virus (TRV)-host-induced gene silencing (HIGS) system using the virulent R. solani AG-1 IA strain GD-118. RNA interference constructs of 33 candidate pathogenicity genes were infiltrated into Nicotiana benthamiana leaves with the TRV-HIGS system. Of these constructs, 29 resulted in a significant reduction in necrosis caused by GD-118 infection. For further validation of one of the positive genes, trehalose-6-phosphate phosphatase (Rstps2), stable rice transformants harbouring the double-stranded RNA (dsRNA) construct for Rstps2 were created. The transformants exhibited reduced gene expression of Rstps2, virulence, and trehalose accumulation in GD-118. We showed that the dsRNA for Rstps2 was taken up by GD-118 mycelia and sclerotial differentiation of GD-118 was inhibited. These findings offer gene identification opportunities for the rice sheath blight pathogen and a theoretical basis for controlling this disease by spray-induced gene silencing.


Assuntos
Oryza , Inativação Gênica , Doenças das Plantas , Rhizoctonia/genética , Virulência/genética
12.
Proteomics ; 19(16): e1800105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31218790

RESUMO

Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis-specific and symbiosis-related proteins and post-translational modifications that play a critical role in mediating symbiotic plant-microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other "omics" data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis-based "omic" approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant-associated microbial communities is also discussed.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Simbiose , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Fabaceae/metabolismo , Fabaceae/microbiologia , Modelos Biológicos , Nodulação , Raízes de Plantas/microbiologia , Plantas/microbiologia , Rhizobium/fisiologia
13.
Sci Rep ; 7(1): 10914, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883457

RESUMO

To dissect the genetic basis of yield formation in restorer line of hybrid rice, we conducted QTL analysis for 6 yield traits including panicles per plant (PPP), grains per panicle (GPP), grain yield per plant (GY), thousand-grain weight (TGW), above-ground biomass (AGB), and harvest index (HI) using SNP markers in a recombinant inbred lines (RILs) population derived from a cross between a tropical japonica inbred Francis and an elite indica restorer Guanghui 998 (R998). A total of 26 QTLs were detected using a high density genetic map consisting of 3016 bin markers. Nineteen out of the 26 QTL alleles from R998 had a beneficial effect on yield traits. Most of the QTLs were co-located with previously reported rice QTLs. qAGB6 and qHI9, controlling AGB and HI respectively, were detected as novel QTLs. Four QTLs for GY were repeatedly detected across two years, with all the beneficial alleles from R998. Notably, qGY8 explained over 20% of the yield variance in both years. Moreover, qGY8 together with qTGW8 and qHI8 formed a QTL cluster. Markers tightly linked with qGY8 were developed. Cloning of qGY8 will facilitate its further exploitation in high-yield breeding.


Assuntos
Mapeamento Cromossômico , Oryza/crescimento & desenvolvimento , Oryza/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Sementes/genética
14.
PLoS One ; 12(8): e0183577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832648

RESUMO

Matrix metalloproteinases (MMPs) are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI) in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.


Assuntos
Arabidopsis/enzimologia , Ascomicetos/patogenicidade , Metaloproteinases da Matriz/metabolismo , Arabidopsis/microbiologia , Perfilação da Expressão Gênica , Metaloproteinases da Matriz/genética , Proteólise
15.
Front Plant Sci ; 8: 112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261226

RESUMO

Glume-unclosing after anthesis is a widespread phenomenon in hybrid rice and also a maternal hereditary trait. The character of Glume-unclosing in rice male sterile lines also seriously influences germination rate and the commercial quality of hybrid rice seeds. We validated that the type of glume-unclosing after anthesis in the elite rice thermo-sensitive genic male sterile (TGMS) line RGD-7S was caused by high temperature. Transcriptomic sequencing of rice panicles was performed to explore the change of transcript profiles under four conditions: pre- and post-anthesis under high temperature (HRGD0 and HRGD1), and pre- and post-anthesis under low temperature (LRGD0 and LRGD1). We identified a total of 14,540 differentially expressed genes (DEGs) including some heat shock factors (HSFs) across the four samples. We found that more genes were up-regulated than down-regulated in the sample pair HRGD1vsHRGD0. These up-regulated genes were significantly enriched in the three biological processes of carbohydrate metabolism, response to water and cell wall macromolecular metabolism. Simultaneously, we also found that the HSF gene OsHsfB1 was specially up-regulated in HRGD1vsHRGD0. However, the down-regulated DEGs in LRGD1vsLRGD0 were remarkably clustered in the biological process of carbohydrate metabolism. This suggests that carbohydrate metabolism may play a key role in regulation of glume-unclosing under high temperature in RGD-7S. We also analyzed the expression pattern of genes enriched in carbohydrate metabolism and several HSF genes under different conditions and provide new insights into the cause of rice glume-unclosing.

16.
Genome ; 59(3): 197-207, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26926666

RESUMO

Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2,758,740 polymorphic sites including 2,408,845 SNPs and 349,895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961,791 SNPs and 46,640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis.


Assuntos
Variações do Número de Cópias de DNA , Mutação INDEL , Oryza/genética , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Vigor Híbrido , Análise de Sequência de DNA
17.
Mol Genet Genomics ; 289(6): 1331-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138194

RESUMO

The WRKY transcription factors belong to an evolutionarily conserved superprotein family predominantly present in the plant kingdom. WRKY proteins of barley are not yet fully annotated and most of them are not functionally characterized. We performed a genome-wide identification of WRKY members based on the recently accessible barley draft genome sequence and full-length cDNA datasets. As a result, 34 novel putative proteins have been identified which extend the existing list for barley WRKYs to 94. Phylogenetic analysis of the WRKY domains allowed ranking into three groups (I, II, III), with an expansion in group III in monocots. Two members of subgroup IIa, the wound and pathogen-inducible HvWRKY1 and HvWRKY2, are known as negative defense regulators. Here, we demonstrate that both transcription factors repress the activity of the powdery mildew-induced promoter of HvGER4c, a germin-like defense-related protein. The repression did not require the negative defense regulator MLO nor was it affected by the presence of the R protein MLA12. Moreover, the expression of the Arabidopsis ortholog AtWRKY40 in barley compromised basal resistance to powdery mildew, providing evidence for functional conservation of sequence-related WRKY proteins across monocots and dicots.


Assuntos
Hordeum/genética , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Ascomicetos/patogenicidade , Hordeum/metabolismo , Hordeum/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
18.
J Plant Res ; 127(6): 775-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25160659

RESUMO

The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.


Assuntos
Adenosina Trifosfatases/genética , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , Glomeromycota/fisiologia , Peróxido de Hidrogênio/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/genética , Adenosina Trifosfatases/metabolismo , Temperatura Baixa , Cucumis sativus/genética , Proteínas de Plantas/metabolismo
19.
Plant Physiol Biochem ; 73: 245-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161754

RESUMO

The mitochondrial uncoupling protein genes improve plant stress tolerance by minimizing oxidative damage. However, the underlying mechanism of redox homeostasis and antioxidant signaling associated with reactive oxygen species (ROS) accumulation remained poorly understood. We introduced LeUCP gene into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR and Southern blot hybridization. One to three copies of the transgene were integrated into the tomato nuclear genome. Transcription of LeUCP in various transgenic lines was determined using real-time PCR. Transgenic tomato overexpressing LeUCP showed higher growth rate, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching coefficient (qP) and electron transport rate (ETR), increased contents of AsA and proline, higher AsA/DHA ratio and GalLDH activity, reduced ROS accumulation, and enhanced heat stress tolerance compared with the control plants. The transgenic tomato plants also exhibited significant increases in tolerance against the necrotrophic fungus Botrytis cinerea. Taken together, our results suggest that LeUCP may play a pivotal role in controlling a broad range of abiotic and biotic stresses in plants by increasing redox level and antioxidant capacity, elevating electron transport rate, lowering H2O2 and lipid peroxidation accumulation.


Assuntos
Adaptação Fisiológica/genética , Botrytis , Resistência à Doença/genética , Genes de Plantas , Temperatura Alta , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Solanum lycopersicum/genética , Canais Iônicos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Proteínas Mitocondriais/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Proteína Desacopladora 1
20.
PLoS One ; 8(8): e73886, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023693

RESUMO

Hybrid weakness (HW) is an important postzygotic isolation which occurs in both intra- and inter-specific crosses. In this study, we described a novel low temperature-dependent intrasubspecific hybrid weakness in the F1 plants derived from the cross between two indica rice varieties Taifeng A and V1134. HW plants showed growth retardation, reduced panicle number and pale green leaves with chlorotic spots. Cytological assay showed that there were reduced cell numbers, larger intercellular spaces, thicker cell walls, and abnormal development of chloroplast and mitochondria in the mature leaves from HW F1 plants in comparison with that from both of the parental lines. Genetic analysis revealed that HW was controlled by two complementary dominant genes Hw3 from V1134 and Hw4 from Taifeng A. Hw3 was mapped in a 136 kb interval between the markers Indel1118 and Indel1117 on chromosome 11, and Hw4 was mapped in the region of about 15 cM between RM182 and RM505 on chromosome 7, respectively. RT-PCR analysis revealed that only LOC_Os11g44310, encoding a putative calmodulin-binding protein (OsCaMBP), differentially expressed among Taifeng A, V1134 and their HW F1. No recombinant was detected using the markers designed based on the sequence of LOC_Os11g44310 in the BC1F2 (Taifeng A//Taifeng A/V1134) population. Hence, LOC_Os11g44310 was probably the candidate gene of Hw3. Gene amplification suggested that LOC_Os11g44310 was present in V1134 and absent in Taifeng A. BLAST search revealed that LOC_Os11g44310 had one copy in the japonica genomic sequence of Nipponbare, and no homologous sequence in the indica reference sequence of 9311. Our results indicate that Hw3 is a novel gene for inducing hybrid weakness in rice.


Assuntos
Temperatura Baixa , Hibridização Genética , Oryza/citologia , Oryza/genética , Sequência de Bases , Clorofila/metabolismo , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Ligação Genética , Dados de Sequência Molecular , Fenótipo , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/ultraestrutura , Plântula/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA