Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Oncotarget ; 8(57): 96774-96790, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228570

RESUMO

Keratin 8 (CK8) is the major component of the intermediate filaments of simple or single-layered epithelia. Gene targeting mice model suggest that CK8 is involved in colonic active ion transport, colorectal hyperplasia and inflammation. In the present study, we found that CK8 is downregulated in the colon during DSS-induced colitis and AOM/DSS-induced colitis-associated colorectal cancer (CAC) development. In human patients with colon cancer, CK8 is downregulated. Using CK8 heterozygous knockout mice (CK8+/-), we found that CK8+/- mice are highly susceptible to DSS-induced colitis and more prone to AOM/DSS-induced CAC than wild type (WT) mice. The colonic permeability is increased with DSS or AOM/DSS treatment, leading to alteration of gut microbiota in CK8+/- mice with CAC. Metagenomic analysis of fecal microbiota suggests Firmicutes and Proteobacteria are increased in CK8+/- mice with CAC, while Bacteroidetes and Verrucomicrobia are decreased. Antibiotic treatment decreases the incidence of colorectal cancer tumorigenesis and TLR4 inhibitor attenuates the susceptibility of CK8+/- mice to DSS-induced colitis. These data suggest CK8 protects mice from colitis and colitis-associated colorectal cancer by modulating colonic permeability and gut microbiota composition homeostasis.

2.
Sci Rep ; 6: 32710, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27586056

RESUMO

Toll-like receptors (TLRs) have critical roles in innate immunity and inflammation and the detailed mechanisms by which TLR signaling is fine tuned remain unclear. Keratin 8 (CK8) belongs to the type II keratin family and is the major compontent of the intermediate filaments of simple or single-layered epithelia. Here we report that down-regulation of CK8 in mice enhanced TLR-mediated responses, rendering mice more susceptible to lipopolysaccharide (LPS)-induced endotoxin shock and Escherichia coli-caused septic peritonitis with reduced survival, elevated levels of inflammation cytokines and more severe tissue damage. We found that CK8 suppressed TLR-induced nuclear factor (NF)-κB activation and interacted with the adaptor tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to prevent its polyubiquitination. Our findings demonstrate a novel role of CK8 in negative regulation of TLR/NF-κB signaling and highlight a previously unidentified nonclassical function for CK8 in limiting inflammatory responses.


Assuntos
Inflamação/patologia , Queratina-8/metabolismo , Choque Séptico/patologia , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Ubiquitinação , Animais , Citocinas/sangue , Modelos Animais de Doenças , Endotoxinas/toxicidade , Infecções por Escherichia coli/patologia , Camundongos , NF-kappa B/metabolismo , Peritonite/patologia , Análise de Sobrevida
3.
Oxid Med Cell Longev ; 2015: 959253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874026

RESUMO

Nrf2 is the key transcription factor regulating the antioxidant response which is crucial for cytoprotection against extracellular stresses. Numerous in vivo studies indicate that Nrf2 plays a protective role in anti-inflammatory response. 3-(3-Pyridylmethylidene)-2-indolinone (PMID) is a synthesized derivative of 2-indolinone compounds. Our previous study suggested that PMID induces the activation of Nrf2/ARE pathway, then protecting against oxidative stress-mediated cell death. However, little is known regarding the anti-inflammatory properties of PMID in severe inflammatory phenotypes. In the present study we determined if PMID treatment protects mice from dextran sodium sulphate- (DSS-) induced colitis. The result suggests that treatment with PMID prior to colitis induction significantly reduced body weight loss, shortened colon length, and decreased disease activity index compared to control mice. Histopathological analysis of the colon revealed attenuated inflammation in PMID pretreated animals. The levels of inflammatory markers in colon tissue and serum were reduced associated with inhibition of NF-κB activation. The expression levels of Nrf2-dependent genes such as HO-1, NQO1, and Nrf2 were increased in PMID pretreated mice. However, PMID pretreatment did not prevent DSS-induced colitis in Nrf2 knockout mice. These data indicate that PMID pretreatment in mice confers protection against DSS-induced colitis in Nrf2-dependent manner, suggesting a potential role of PMID in anti-inflammatory response.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Indóis/uso terapêutico , Piridinas/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/fisiologia , Citocinas/análise , Citocinas/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Indóis/síntese química , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Piridinas/síntese química , Piridinas/farmacologia , Índice de Gravidade de Doença
4.
Cell Signal ; 26(5): 1089-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24509415

RESUMO

GATA-2, a member of zinc finger GATA transcription factor family, plays key role in the hematopoietic stem cells self-renewal and differentiation. The transforming growth factor-ß (TGFß) signaling pathway is a major signaling network that controls cell proliferation, differentiation and tumor suppression. Here we found that GATA-2 negatively regulated TGF-ß signaling pathway in Smad4-dependent manner. GATA-2 specifically interacts with Smad4 with its N-terminal while the zinc finger domain of GATA-2 is essential for negative regulation of TGFß. Although GATA-2 did not affect the phosphorylation of Smad2/3 and the complex Smad2/3/4 formation in response to TGFß, the DNA binding activity of Smad4 was decreased significantly by GATA-2 overexpression. Overexpression of GATA-2 in K562 cells led to reduced TGFß-induced erythroid differentiation while knockdown of GATA-2 enhanced TGFß-induced erythroid differentiation. All these results suggest that GATA-2 is a novel negative regulator of TGFß signal pathway.


Assuntos
Fator de Transcrição GATA2/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Fator de Transcrição GATA2/antagonistas & inibidores , Fator de Transcrição GATA2/genética , Células HEK293 , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Células K562 , Fosforilação/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA