Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408808

RESUMO

The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.


Assuntos
Redes Reguladoras de Genes , Cabras , Hipotálamo , RNA Circular , Reprodução , Animais , Cabras/genética , RNA Circular/genética , Hipotálamo/metabolismo , Feminino , Reprodução/genética , Perfilação da Expressão Gênica , Ontologia Genética , Transcriptoma , Regulação da Expressão Gênica
2.
Front Vet Sci ; 11: 1420164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372899

RESUMO

The reproductive performance of goats significantly influences breeding efficiency and economic returns, with litter size serving as a comprehensive indicator. Despite this, research on the genetic control of litter size remains limited. Therefore, we aimed to explore the candidate genes affecting fecundity and compared the whole-genome sequences (WGS) of 15 high-litter (HL) and 15 low-litter (LL) size in Chuanzhong black goats. Then genetic diversity and genomic variation patterns were analyzed by phylogenetic, principal component and population genetic structure analysis, it was found that HL and LL subpopulations diverged. Population evolutionary selection elimination analysis was performed by Fst and θπ resulted in 506 genes were annotated in HL and 528 genes in LL. These genes were mainly related to Hippo signaling pathway, G protein-coupled signaling pathway, G protein-coupled receptor activity, cell surface receptor signaling pathway, gonadal and reproductive structure development. According to the significantly selected genomic regions and important pathways, we found that the g.89172108T > G variant locus in the exon of the AMH gene was significantly associated with litter size (P < 0.05), which could be used as an auxiliary selection gene for the high fertility of Chuanzhong black Goat.

3.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110050, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378974

RESUMO

Biomarkers concerning antioxidant reactions and detoxification metabolics were evaluated in Meretrix meretrix exposed to cadmium (Cd, 10 µg/L) and phenanthrene (PHE, 100 µg/L) individually and in combination (10 µg/L Cd + 100 µg/L PHE) for 7 days. The accumulation of Cd and PHE measured in the digestive gland, gill, mantle, and axe foot of the clam showed significant increase in combination treatment and it was higher than the single Cd or single PHE treatment. The activities of oxidative stress-related enzymes, the expression of Cu/Zn SOD, and the content of MDA increased after Cd and PHE exposure in the digestive gland and gill at most cases. In the digestive gland, CAT gene expression was significantly induced in Cd-single group and significantly inhibited in PHE-single group and Cd-PHE mixed group at both day 3 and day 7; in the gill, CAT gene expression was significantly inhibited in all groups at day 3 and except for Cd-single group at day 7. MT expression was significantly induced in Cd-single and Cd-PHE mixed groups at day 7, while hsp70 expression was significantly inhibited in PHE-single and Cd-PHE mixed groups at day 7. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, MT and hsp70 were sensitive to cadmium and PHE in a water environment, and can be used as indicators of marine heavy metal pollution.

4.
Animals (Basel) ; 14(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39457858

RESUMO

The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < 0.05) and subsequent blastocyst rate (p < 0.05) of the low-concentration 1 and 5 µmol/L MitoQ treatment group were increased. The level of ROS (p < 0.05) in the MitoQ treatment group was decreased in comparison to the control group. Additionally, the level of GSH, MMP, ATP, and mt-DNA in the MitoQ treatment group was increased (p < 0.05) in comparison to the control group. The expression level of BAX was decreased (p < 0.05) in the MitoQ treatment group, and the BCL2, DNM1, Mfn2, SOD, and CAT were increased (p < 0.05). In conclusion, MitoQ improved mitochondrial dysfunction, increased mitochondrial activity during IVM, and reduced oxidative stress, resulting in increased IVM rates and subsequent embryonic development from culled cows.

5.
BMC Genomics ; 25(1): 893, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342142

RESUMO

BARKGROUND: Circular RNAs (circRNAs) play important regulatory roles in a variety of biological processes in mammals. Multiple birth-traits in goats are affected by several factors, but the expression and function of circRNAs in follicular development of goats are not clear. In this study, we aimed to investigate the possible regulatory mechanisms of circRNA and collected five groups of large follicles (Follicle diameter > 6 mm) and small follicles (1 mm < Follicle diameter < 3 mm) from Leizhou goats in estrus for RNA sequencing. RESULTS: RNA sequencing showed that 152 circRNAs were differentially expressed in small and large follicles. Among them, 101 circRNAs were up-regulated in large follicles and 51 circRNAs were up-regulated in small follicles. GO and KEGG enrichment analyses showed that parental genes of the differential circRNAs were significantly enriched in important pathways, such as ovarian steroidogenesis, GnRH signaling pathway, animal autophagy and oxytocin signalling pathway. BioSignal analysis revealed that 152 differentially expressed circRNAs could target 91 differential miRNAs including miR-101 family (chi-miR-101-3p, chi-miR-101-5p), miR-202 family (chi-miR-202-5p, chi-miR-202-3p),60 circRNAs with translation potential. Based on the predicted sequencing results, the ceRNA networks chicirc_008762/chi-miR-338-3p/ARHGAP18 and chicirc_040444/chi-miR-338-3p/STAR were constructed in this study. Importantly, the new gene circCFAP20DC was first discovered in goats. The EDU assay and flow cytometry results indicated that circCFAP20DC enhanced the proliferation of follicular granulosa cells(GCs). Real-time quantitative PCR and western blotting assays showed that circCFAP20DC activated the Retinoblastoma(RB) pathway and promoted the progression of granulosa cells from G1 to S phase. CONCLUSION: Differential circRNAs in goat size follicles may have important biological functions for follicular development. The novel gene circCFAP20DC activates the RB pathway, promoting the progression of GCs from G1 to S phase. This, in turn, enhances the proliferation of follicular GCs in goats.


Assuntos
Cabras , Folículo Ovariano , RNA Circular , Animais , Cabras/genética , Feminino , RNA Circular/genética , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , MicroRNAs/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência de RNA
7.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062792

RESUMO

Litter size is a crucial quantitative trait in animals, closely linked to follicular development. Circular RNA (circRNA), a type of single-stranded closed-loop endogenous RNA with stable expression, plays pivotal roles in various biological processes, yet its function in goat follicular development remains unclear. In this study, we collected large (follicle diameter > 3 mm) and small (1 mm < follicle diameter < 3 mm) follicles from black goats in the Chuanzhong region for circRNA sequencing, with the aim of elucidating the functional circRNAs that influence follicle development in goats. Differential analysis revealed that 17 circRNAs were upregulated in large follicles, and 28 circRNAs were upregulated in small follicles. Functional enrichment analysis revealed significant enrichment of pathways related to reproduction, including cellular response to follicle-stimulating hormone stimulus, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Notch signaling pathway. Based on the ceRNA mechanism, 45 differentially expressed circRNAs were found to target and bind a total of 418 miRNAs, and an intercalation network including miR-324-3p (circRNA2497, circRNA5650), miR-202-5p (circRNA3333, circRNA5501), and miR-493-3p (circRNA4995, circRNA5508) was constructed. In addition, conservation analysis revealed that 2,239 circRNAs were conserved between goats and humans. Prediction of translation potential revealed that 154 circRNAs may potentially utilize both N6-methyladenosine (m6A) and internal ribosome entry site (IRES) translation mechanisms. Furthermore, the differential expression and circularization cleavage sites of five circRNAs were validated through RT-qPCR and DNA sequencing. Our study constructed a circRNA map in goat follicle development, offering a theoretical foundation for enhancing goat reproductive performance.


Assuntos
Cabras , Folículo Ovariano , RNA Circular , Animais , Cabras/genética , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Folículo Ovariano/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais , Redes Reguladoras de Genes
8.
Front Microbiol ; 15: 1378073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770021

RESUMO

This study investigates the effects of varying energy levels in diets on Black Angus steers, focusing on growth performance, muscle composition, rumen microbial community, and their interrelationships. Twenty-seven Black Angus steers, aged approximately 22 months and weighing 520 ± 40 kilograms, were randomly divided into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). Each group consisted of nine individuals. The steers were fed diets with energy levels of 6.657 MJ/kg (LE), 7.323 MJ/kg (ME), and 7.990 MJ/kg (HE) following a 14-day pre-feeding period, with a subsequent 90-day main experimental phase. After the 90-day feeding period, both the HE and ME groups exhibited significantly higher average daily weight gain (ADG) compared to the LE group (p < 0.05). The feed-to-weight ratios were lower in the HE and ME groups compared to the LE group (p < 0.05). The HE group showed significantly higher crude fat content in the longissimus dorsi muscle compared to the LE group (p < 0.05), with total fatty acid content in the muscle surpassing that in the ME and LE groups (p < 0.05). As dietary energy levels increased, the diversity of the rumen microbial community decreased (p < 0.05), and significant differences in bacterial community structure were observed between the LE and HE groups (p < 0.05). The results suggest that higher dietary energy levels enhance growth performance and alter muscle composition in Black Angus steers, while also influencing the rumen microbial community. This study contributes to understanding optimal dietary strategies for finishing Angus cattle to improve beef quality, economic returns, and the development of standardized production procedures.

9.
Sci Rep ; 14(1): 9858, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684760

RESUMO

The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.


Assuntos
Perfilação da Expressão Gênica , Cabras , MicroRNAs , Músculo Esquelético , RNA Mensageiro , Animais , Cabras/genética , Cabras/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473968

RESUMO

The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.


Assuntos
MicroRNAs , Receptores de Grelina , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação , MicroRNAs/genética , Apoptose/genética , Proliferação de Células/genética , Luciferases , Linhagem Celular Tumoral
11.
Artigo em Inglês | MEDLINE | ID: mdl-38387688

RESUMO

To understand the effect of salinity on the toxicokinetics, oxidative stress, and detoxification of cadmium-exposed Meretrix meretrix, M. meretrix were acclimatized to different salinities (8, 14, 20, 26, and 32 ppt) for 14 d, exposed to 10 µg/L Cd for 7 d, followed by a 28-day depuration period. The internal Cd concentration was determined, and the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST)), and the malondialdehyde (MDA) content were measured. The mRNA expression levels of antioxidant enzyme (Cu/Zn SOD, CAT) and detoxification-related genes metallothionein (MT) were analyzed. The mean concentrations of Cd in M. meretrix tissues were in the order gill > digestive gland > mantle > axe foot. The Cd uptake rate in the four tissues decreased with increasing salinity (range: 14-26 ppt). The Cd elimination half-lives were the highest at 8 ppt and 14 ppt salinity. Cadmium activated the four oxidative stress-related related enzymes in the gills. At the end of accumulation period, Cd exposure at 20 ppt salinity significantly increased the expression of Cu/Zn SOD. CAT expression was significantly inhibited at 20 ppt salinity, but was induced at 32 ppt. MT mRNA expression was only induced under Cd at 20 ppt salinity. At the end of depuration period, Cu/Zn SOD expression was inhibited at salinities of 8, 14, and 26 ppt. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, and MT were sensitive to cadmium in a water environment, and can be used as indicators of marine heavy metal pollution.


Assuntos
Cádmio , Poluentes Químicos da Água , Animais , Cádmio/análise , Antioxidantes/metabolismo , Salinidade , Metalotioneína/genética , Metalotioneína/metabolismo , Toxicocinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo
12.
Front Genet ; 14: 1303031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152654

RESUMO

The pituitary gland serves as the central endocrine regulator of growth, reproduction, and metabolism and plays a crucial role in the reproductive process of female animals. Transcriptome analysis was conducted using pituitary gland samples from Leizhou goats with varying levels of fecundity to investigate the effects of long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA regulation on pituitary hormone secretion and its association with goat fecundity. The analysis aimed to identify lncRNAs, circRNAs, and mRNAs that influence the fertility of Leizhou goats. GO and KEGG enrichment analyses were performed on differentially expressed lncRNAs, circRNAs, and mRNAs and revealed considerable enrichment in pathways, such as regulation of hormone secretion, germ cell development, and gonadotropin-releasing hormone secretion. The pituitary lncRNAs (ENSCHIT00000010293, ENSCHIT00000010304, ENSCHIT00000010306, ENSCHIT00000010290, ENSCHIT00000010298, ENSCHIT00000006769, ENSCHIT00000006767, ENSCHIT00000006921, and ENSCHIT00000001330) and circRNAs (chicirc_029285, chicirc_026618, chicirc_129655, chicirc_018248, chicirc_122554, chicirc_087101, and chicirc_078945) identified as differentially expressed regulated hormone secretion in the pituitary through their respective host genes. Additionally, differential mRNAs (GABBR2, SYCP1, HNF4A, CBLN1, and CDKN1A) influenced goat fecundity by affecting hormone secretion in the pituitary gland. These findings contribute to the understanding of the molecular mechanisms underlying pituitary regulation of fecundity in Leizhou goats.

13.
AMB Express ; 13(1): 106, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787860

RESUMO

Herbal tea residue (HTR) is generally considered to be a reusable resource which has still retains considerable proportion of nutrients and active substances. This study aimed to investigate the effects of substitution of whole corn silage with fermented herbal tea residue (FHTR) on meat quality, serum indices, rumen fermentation, and microbes in Chuanzhong black goats. Twenty-two female Chuanzhong black goats (4 months old) with similar weight (9.55 ± 0.95 kg) were selected and randomly divided into two groups. FHTR was used to replace 0% (CON group) and 30% (FHTR group) of whole corn silage in the diets and fed as a total mixed ration (TMR) for Chuanzhong black goats. The adaptation feeding period was 7 days, and the experimental period was 35 days. Results illustrated that the FHTR group had higher value of a* and concentrations of DM and CP and lower rate of water loss (P < 0.05) than the CON group. For the serum indices, goats fed with 30% FHTR had higher (P < 0.05) concentration of CR on day 35. For rumen fermentation, the pH and ratio of acetic acid/propionic acid (AA/PA) in the FHTR group were significantly lower than those in the CON group (P < 0.05). In addition, we studied the goats's rumen microbial community composition and found that the dominant phyla were Firmicutes, Bacteroidetes,and Tenericutes; and the dominant genera were Quinella, Candidatus_Saccharimonas, and Saccharofermentans. There was a significant difference in the beta diversity of the rumen microbiota between groups (P < 0.05). To sum up, the addition of FHTR can affect the meat quality, serum indices, improved rumen fermentation by adjusted the diversity and function of the rumen microbiota.

14.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37891930

RESUMO

This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.

15.
Int J Biol Macromol ; 253(Pt 6): 127108, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776927

RESUMO

This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.


Assuntos
Microbiota , Moringa oleifera , Animais , Bovinos , Moringa oleifera/química , Transcriptoma , Fosfatidilinositol 3-Quinases , Polissacarídeos/farmacologia , Polissacarídeos/análise , Diarreia , Folhas de Planta/química
16.
Animals (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570255

RESUMO

Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.

17.
Animals (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570317

RESUMO

In this study, changes in milk performance, nutrient digestibility, hindgut fermentation parameters and microflora were observed by inducing milk fat depression (MFD) in dairy cows fed with a high-starch or a high-fat diet. Eight Holstein cows were paired in a completely randomized cross-over design within two 35 d periods (18 d control period and 17d induction period). During the control period, all cows were fed the low-starch and low-fat diet (CON), and at the induction period, four of the cows were fed a high-starch diet with crushed wheat (IS), and the other cows were fed a high-fat diet with sunflower fat (IO). The results showed that, compared to when the cows were fed the CON diet, when cows were fed the IS or IO diet, they had lower milk fat concentrations, energy corrected milk, 3.5% fat-corrected milk yield, feed efficiency and apparent digestibility of NDF and ADF. However, cows fed the IO diet had a lower apparent digestibility of ether extracts. In addition, we observed that when cows were fed the high-starch (IS) or high-fat (IO) diet, they had a higher fecal concentration of propionate and acetate, and a lower NH3-N. Compared to when the cows were fed the CON diet, cows fed the IS diet had a lower pH, and cows fed the IO diet had a lower concentration of valerate in feces. In the hindgut microbiota, the relative abundance of Oscillospiraceae_UCG-005 was increased, while the Verrucomicrobiota and Lachnospiraceae_AC2044_group were decreased when cows were fed the IO diet. The relative abundance of Prevotellaceae_UCG-003 was increased, while the Alistipes and Verrucomicrobiota decreased, and the Treponema, Spirochaetota and Lachnospiraceae_AC2044_group showed a decreasing trend when cows were fed the IS diet. In summary, this study suggested that high-starch or high-fat feeding could induce MFD in dairy cows, and the high-fat diet had the greatest effect on milk fat; the high-starch or high-fat diet affected hindgut fermentation and apparent fiber digestibility. The changes in hindgut flora suggested that hindgut microbiota may be associated with MFD in cows.

18.
Animals (Basel) ; 13(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570353

RESUMO

Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.

19.
Microorganisms ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630463

RESUMO

Capsaicin (CAP) has various biological activities; it has antibacterial, anti-inflammatory and antioxidant properties, and stimulates intestinal development. The aim of this study was to investigate the effect of CAP on the health of nursing calves under group housing conditions. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups of eight calves each. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of CAP in each of the three treatment groups. Following a one-month clinical trial of individual-pen housing, an extended one-month trial of group housing was conducted. At the end of the trial, serum samples, rectal fecal samples and upper respiratory swab samples were collected to determine the effect of CAP addition on serum parameters, fecal fermentation parameters and upper respiratory microbiota of calves under group housing conditions. The results showed that the addition of high doses of CAP decreased calf respiratory scores (p < 0.05), increased serum glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 concentration (p < 0.05), and decreased malondialdehyde, amyloid A and haptoglobin concentration (p < 0.05). Moreover, high doses of CAP increased the rectal fecal concentration of total short-chain fatty acids, acetate and butyric acid (p < 0.05). In addition, CAP regulated the upper respiratory tract microbiota, with high doses of CAP reducing Mycoplasma abundance (p < 0.05), two doses of CAP reducing Corynebacterium abundance (p < 0.05) and a tendency to reduce Staphylococcus abundance (p = 0.06). Thus, CAP can improve calf antioxidant capacity, immune capacity and reduce inflammatory factors, stress proteins as well as improve gut fermentation and upper respiratory microbiota under group housing conditions, which is beneficial for healthy calf growth.

20.
BMC Genomics ; 24(1): 499, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644462

RESUMO

This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.


Assuntos
Biologia Computacional , RNA Circular , Animais , Bovinos/genética , China , Carne , Músculos Paraespinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA