Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Sci Rep ; 14(1): 22227, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333330

RESUMO

The intensification of human activities in the Yellow River Basin has significantly altered its ecosystems, challenging the sustainability of the region's ecosystem assets. This study constructs an ecosystem asset index for the period from 2001 to 2020, integrating it with human footprint maps to analyze the temporal and spatial dynamics of ecosystem assets and human activities within the basin, as well as their interrelationships. Our findings reveal significant improvement of ecosystem assets, mainly attributed to the conversion of farmland back into natural habitats, resulting in a 15,994 km2 increase in ecological land use. Notably, 45.88% of the basin has experienced concurrent growth in both human activities and ecosystem assets, with ecosystem assets expanding at a faster rate (22.61%) than human activities (17.25%). Areas with high-quality ecosystem assets are expanding, in contrast to areas with intense human activities, which are facing increased fragmentation. Despite a global escalation in threats from human activities to ecosystem assets, the local threat level within the Yellow River Basin has slightly diminished, indicating a trend towards stabilization. Results highlight the critical importance of integrating spatial and quality considerations into restoration efforts to enhance the overall condition of ecosystem assets, especially under increasing human pressures. Our work assesses the impact of human activities on the dynamics of ecosystem assets in the Yellow River Basin from 2001 to 2020, offering valuable insights for quality development in the region, may provide a scientific basis for general watershed ecological protection and sustainable management in a region heavily influenced by human activity but on a path to recovery.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Atividades Humanas , Rios , Humanos , Conservação dos Recursos Naturais/métodos , China , Monitoramento Ambiental/métodos
2.
Chemosphere ; 364: 143230, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222693

RESUMO

Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.


Assuntos
Hemócitos , Imunidade Humoral , Pentaclorofenol , Animais , Pentaclorofenol/toxicidade , Imunidade Humoral/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Imunidade Celular/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Bivalves/imunologia , Poluentes Químicos da Água/toxicidade , Arcidae/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Sci Total Environ ; 951: 175627, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168348

RESUMO

The ubiquitous presence of the disinfectant triclosan (TCS) has raised global concerns regarding its potential threat to aquatic organisms. However, the effects of TCS on lipid metabolism in fish and its underlying mechanisms remain unclear. This study investigated the effect of environmentally relevant levels of TCS on the lipid metabolism in the cyprinid fish Squalidus argentatus. Our results showed that the lipid metabolism in the cyprinid fish S. argentatus was perturbed by 28-day exposure to TCS, as evidenced by higher levels of lipid accumulation in both the liver and blood. To elucidate the mechanisms underlying toxicity, we evaluated oxidative stress, inflammatory status, and lipase activity in the liver. Our findings indicated increased ROS-specific fluorescence intensity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in the livers of S. argentatus exposed to TCS, suggesting oxidative damage. Additionally, TCS treatment induced the production of proinflammatory cytokines in the liver of S. argentatus exposed to TCS, which suppressed hepatic lipase activity. Intestinal tissue morphology, inflammation, and blood lipopolysaccharide (LPS) levels were also examined. Significant increases in goblet cell count and MDA levels were observed in the intestinal tract. After 28 days of TCS exposure, the serum LPS levels were significantly elevated. 16S rRNA sequencing was conducted to analyze the effects of TCS on the diversity and composition of the intestinal microbiota. Transcriptomic analysis was performed to reveal global molecular alterations following TCS exposure. In conclusion, our results indicate that TCS may disrupt the lipid metabolism in S. argentatus by (i) inducing hepatic oxidative stress and inflammation, which suppress lipoprotein lipase activity, (ii) affecting the production of beneficial metabolites and endotoxins by dysregulating gut microbiota composition, and (iii) altering the expression levels of lipid metabolism-related pathways.


Assuntos
Cyprinidae , Metabolismo dos Lipídeos , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cyprinidae/fisiologia , Cyprinidae/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos
4.
J Hazard Mater ; 479: 135661, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39213767

RESUMO

Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.


Assuntos
Retardadores de Chama , Carpa Dourada , Mucosa Olfatória , Bifenil Polibromatos , Olfato , Poluentes Químicos da Água , Animais , Bifenil Polibromatos/toxicidade , Poluentes Químicos da Água/toxicidade , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Retardadores de Chama/toxicidade , Olfato/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Comportamento Animal/efeitos dos fármacos
5.
Front Pharmacol ; 15: 1430780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966555

RESUMO

Background and Objective: Ginseng has been regarded as a precious medicinal herb with miraculous effects in Eastern culture. The primary chemical constituents of ginseng are saponins, and the physiological activities of ginsenosides determine their edible and medicinal value. The aim of this study is to comprehensively and systematically investigate the kinetic processes of 20(S)-protopanaxadiol (PPD) in rats and dogs, in order to promote the rational combination of ginseng as a drug and dietary ingredient. Methods: PPD was administered, and drug concentration in different biological samples were detected by liquid chromatography tandem mass spectrometry (LC/MS/MS) and radioactive tracer methods. Pharmacokinetic parameters such as absorption, bioavailability, tissue distribution, plasma protein binding rate, excretion rate, and cumulative excretion were calculated, along with inference of major metabolites. Results: This study systematically investigated the absorption, distribution, metabolism, excretion (ADME) of PPD in rats and dogs for the first time. The bioavailabilities of PPD were relatively low, with oral absorption nearly complete, and the majority underwent first-pass metabolism. PPD had a high plasma protein binding rate and was relatively evenly distributed in the body. Following oral administration, PPD underwent extensive metabolism, potentially involving one structural transformation and three hydroxylation reactions. The metabolites were primarily excreted through feces and urine, indicating the presence of enterohepatic circulation. The pharmacokinetic processes of PPD following intravenous administration aligned well with a three-compartment model. In contrast, after gastric administration, it fitted better with a two-compartment model, conforming to linear pharmacokinetics and proportional elimination. There were evident interspecies differences between rats and dogs regarding PPD, but individual variations of this drug were minimal within the same species. Conclusion: This study systematically studied the kinetic process of PPD in rats and also investigated the kinetic characteristics of PPD in dogs for the first time. These findings lay the foundation for further research on the dietary nutrition and pharmacological effects of PPD.

6.
Sci Total Environ ; 946: 174112, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908581

RESUMO

The ubiquitous presence of plastic particles in water bodies poses a potential threat to aquatic species. Although numerous adverse effects of microplastics (MPs) and nanoplastics (NPs) have been documented, their effects on fish feeding, one of the most important behaviors of animals, are far from being fully understood. In this study, the effects of MPs and NPs (at environmentally realistic levels) on fish food consumption and feeding behavior were assessed using goldfish (Carassius auratus) and polystyrene (PS) particles as representatives. In addition, to reveal the potential mechanisms, the effects of MPs and NPs on peripheral and central regulation of appetite were evaluated by examining appetite-regulation related intestinal, serous, and hypothalamic parameters. The results obtained indicated that the 28-day MP- and NP-exposure significantly impaired goldfish feeding by disrupting peripheral and central appetite regulation. Based on differences observed in their effects on the abovementioned behavioral, histological, and physiological parameters, MPs and NPs may interfere with appetite regulation in a size-dependent manner. Blocking the gastrointestinal tract and causing histopathological and functional damage to inner organs may be the main routes through which MPs and NPs disrupt appetite regulation. Our findings suggested that plastic particles exposure may have far-reaching effects on fish species through impaired feeding, which warrants further attention.


Assuntos
Comportamento Alimentar , Carpa Dourada , Microplásticos , Poluentes Químicos da Água , Animais , Carpa Dourada/fisiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Nanopartículas/toxicidade , Apetite/efeitos dos fármacos , Regulação do Apetite/efeitos dos fármacos
7.
Sci Total Environ ; 926: 172125, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565353

RESUMO

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Assuntos
Toxinas Marinhas , Mytilus , Animais , Toxinas Marinhas/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Mytilus/metabolismo , Frutos do Mar
8.
Chemosphere ; 356: 141971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604519

RESUMO

The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 µg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.


Assuntos
Antibacterianos , Enrofloxacina , Microbioma Gastrointestinal , Neurotransmissores , Peixe-Zebra , Animais , Neurotransmissores/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Enrofloxacina/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Poluentes Químicos da Água/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Malondialdeído/metabolismo , Lipopolissacarídeos
9.
J Hazard Mater ; 468: 133771, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364581

RESUMO

The ubiquitous presence of microplastics (MPs) in aquatic environments poses a significant threat to crustaceans. Although exoskeleton quality is critical for crustacean survival, the impact of MPs on crustacean exoskeletons remains elusive. Our study represents a pioneering effort to characterize the effects of MPs exposure on crustacean exoskeletons. In this study, the mechanical properties of whiteleg shrimp Litopenaeus vannamei exoskeletons were analyzed after exposure to environmentally realistic levels of MPs. Nanoindentation data demonstrated that MPs exposure significantly increased the hardness and modulus of both the carapace and abdominal segments of L. vannamei. Moreover, fractures and embedded MPs were detected on the exoskeleton surface using SEM-EDS analysis. Further analysis demonstrated that the degree of chitin acetylation (DA) in the shrimp exoskeleton, as indicated by FTIR peaks, was reduced by MPs exposure. In addition, exposure to MPs significantly inhibited the muscle Ca2+-ATPase activity and hemolymph calcium levels. Transcriptome and metabolome analyses revealed that the expression levels of genes encoding key enzymes and metabolites in the chitin biosynthetic pathway were significantly affected by MPs exposure. In conclusion, MPs at environmentally relevant concentrations may affect the exoskeletal mechanical properties of L. vannamei through a comprehensive mechanism involving the disruption of the crystalline structure of chitin, assimilation into the exoskeleton, and dysregulation of exoskeleton biosynthesis-related pathways.


Assuntos
Microplásticos , Penaeidae , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Transcriptoma , Quitina/metabolismo
10.
Environ Pollut ; 344: 123315, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185353

RESUMO

Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Praguicidas , Tiazóis , Tiofenos , Animais , Antioxidantes/metabolismo , Praguicidas/metabolismo , Astacoidea/metabolismo , Medição de Risco
11.
Aquat Toxicol ; 266: 106778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056281

RESUMO

Omnipresent presence of triclosan (TCS) in aqueous environment puts a potential threat to organisms. However, it's poorly understood about its immunometabolic impacts of marine invertebrates. In present study, we use a representative bivalve blood clam (Tegillarca granosa) as a model, investigating the effects of TCS exposure at 20 and 200 µg/L for 28 days on immunometabolism, detoxification, and cellular homeostasis to explore feasible toxicity mechanisms. Results demonstrated that the clams exposed to TCS resulting in evident immunotoxic impacts on both cellular and humoral immune responses, through shifting metabolic pathways and substances, as well as suppressing the expressions of genes from the immune- and metabolism-related pathways. In addition, significant alterations in contents (or activity) of detoxification enzymes and the expression of key detoxification genes were detected in TCS-exposed clams. Moreover, exposure to TCS also disrupted cellular homeostasis of clams through increasing MDA contents and caspase activities, and promoting activation of the apoptosis-related genes. These findings suggested that TCS might induce immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis.


Assuntos
Arcidae , Bivalves , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Homeostase
12.
Emerg Microbes Infect ; 12(2): 2270062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815175

RESUMO

Some post-licensure studies have shown a potential increased risk of intussusception following vaccination with rotavirus vaccines. This is the first study that aimed to assess the incidence and risk of intussusception within 90 days after vaccination with RotaTeq in Chinese infants. A population-based birth cohort from 27th November 2018 to 30th June 2021 included all newborns in Ningbo city. The records of intussusception were identified through the ICD-10 code K56.1 or Chinese keywords "Chang Tao" from all hospital discharge records. Each episode was confirmed in line with the Brighton criteria, and only Brighton level 1 cases were included. The association of RotaTeq vaccination and intussusception was evaluated using the Poisson regression. A total of 108,405 eligible subjects from birth cohort were eligible, with 52.30% males. Among them, 26, 847 (24.77%) infants received at least one dose of RotaTeq, and 95.52% of them were fully vaccinated, with 76, 934 doses in total. After adjudication, none of the cases occurred post first, or second dose, the cumulative number of cases that occurred 1-7, 1-14, 1-21, 1-42, and 1-90 days post third dose was 0, 1, 1, 3, and 7, respectively. Adjusting for age, sex, birth year, birth season and location, the incidence rate ratio of intussusception after RotaTeq vaccination was 0.90 (90% two-sided CI: 0.46, 1.75). Increasing age and male gender were associated with higher risk of intussusception. In summary, no increased risk of IS was observed following 3 months of RotaTeq vaccination in this study.


Assuntos
Intussuscepção , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Recém-Nascido , Lactente , Humanos , Masculino , Feminino , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Coorte de Nascimento , Intussuscepção/etiologia , Intussuscepção/induzido quimicamente , Vacinação/efeitos adversos , Vacinas contra Rotavirus/efeitos adversos , Vacinas Atenuadas/efeitos adversos , China/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle
13.
Hum Vaccin Immunother ; 19(2): 2257989, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37813849

RESUMO

Cervical cancer is the fourth most common cancer in women, with a high disease burden worldwide. Human papillomavirus (HPV) vaccination reduces HPV-related infection and associated cervical lesions and cancers. Few studies have explored HPV vaccination impact in real-world settings in China. This study aims to monitor HPV vaccine uptake and its effects on HPV-related diseases, evaluating vaccine effectiveness in a real-world context and complementing clinical trial results. Electronic health records (EHRs) from 2010 to 2020 from the Yinzhou Regional Health Information Platform (YRHIP) will be queried/extracted to identify and monitor HPV vaccine uptake in females aged 9-45 years, and HPV-related screening and prevalence (i.e., cervical HPV infection, cervical intraepithelial neoplasia [CIN] grades 1-3, and cervical cancer) in a cohort of females aged 9-70 years. Cervical cancer screening guidelines and expert consultation will be used for intra-database validation, to determine the best algorithm for identifying HPV-related disease. Pre-launch (2010-2016) and post-launch (2018-2020) periods are predefined. A time trend analysis will be performed to describe the vaccination impact on disease prevalence and, if prerequisite conditions are met, vaccine effectiveness will be computed using logistic regression, adjusting for age, calendar year, history of screening and HPV infection. Cohort study design, outcomes validation, data linkage, and multi-step statistical analyses could provide valuable experience for designing other real-world studies in the future. The study outcomes can help inform policy-makers about uptake and HPV vaccination policy in girls and women in Yinzhou District, and provide insights on progress toward achieving goals set by the World Health Organization.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/complicações , Estudos de Coortes , Registros Eletrônicos de Saúde , Filmes Cinematográficos , Detecção Precoce de Câncer , Vacinação , China/epidemiologia
14.
Environ Sci Pollut Res Int ; 30(46): 102474-102489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668775

RESUMO

The ecological security (ES) of urban agglomeration and surrounding environmental system is related to the sustainable development of cities, which is a hot spot that we must pay attention to. In this study, four subsystems composed of natural base, landscape structure, ecosystem stability, and anthropogenic interference were used to evaluate the comprehensive ecological security (CES) of Guangdong-Hong Kong-Macao Greater Bay Area (GHMGBA) in 2000, 2010 and 2020. The results show that CES of the region was generally well. The central urban region of GHMGBA was unsafety with an area proportion of about 24.5%, the periphery was safety with an area proportion of about 43.5%, and the others are transitional zone. From 2000 to 2020, the CES change first slightly decreases and then relatively stable, and the transfer of different safety levels mainly occurs in the transitional zone. In 2010-2020 the transfer of different levels of CES is more frequent than in 2000-2010, indicating that the spatial-temporal pattern of CES fluctuated sharply during 2010-2020. The urban-rural gradient showed that with the increase of distance, CES fluctuations increase, but decreases at about 20-40km, 60-80km and 120-140km away from the city center, which may be sub-urban regions. The overall CES change range gradually decreases with increasing distance from urban centers. This study helps to understand the temporal and spatial distribution of ecological environment and urban-rural gradient in typical urban regions, and provides a reference for the collaborative planning of urban agglomeration.

15.
Fish Shellfish Immunol ; 142: 109093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722437

RESUMO

C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, serve as pattern recognition receptors (PRRs) in the immune response of many species. However, little is currently known about the CTLs of the commercially and ecologically important bivalve species, blood clam (Tegillarca granosa). In this study, a CTL (designated as TgCTL-1) with a single carbohydrate-recognition domain (CRD) containing unique QPN/WDD motifs was identified in the blood clam through transcriptome and whole-genome searching. Multiple alignment and phylogenetic analysis strongly suggested that TgCTL-1 was a new member of the CTL superfamily. Expression analysis demonstrated that TgCTL-1 was highly expressed in the hemocytes and visceral mass of the clam under normal condition. In addition, the expression of TgCTL-1 was shown to be significantly up-regulated upon pathogen challenge. Moreover, the recombinant TgCTL-1 (rTgCTL-1) displayed agglutinating and binding activities against both the gram-positive and gram-negative bacteria tested in a Ca2+-dependent manner. Furthermore, it was found that the in vitro phagocytic activity of hemocytes was significantly enhanced by rTgCTL-1. In general, our results showed that TgCTL-1 was an inducible acute-phase secretory protein, playing crucial roles in recognizing, agglutinating, and binding to pathogenic bacteria as well as modulating phagocytic activity of hemocytes in the innate immune defense of blood clam.


Assuntos
Arcidae , Bivalves , Animais , Imunidade Inata/genética , Sequência de Aminoácidos , Sequência de Bases , Bactérias Gram-Negativas/fisiologia , Lectinas Tipo C , Filogenia , Antibacterianos , Bactérias Gram-Positivas/fisiologia , Bivalves/metabolismo , Arcidae/metabolismo , Carboidratos
16.
Fish Shellfish Immunol ; 140: 108988, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541635

RESUMO

The lectins are a large family of carbohydrate-binding proteins that play important roles in the innate immune response of various organisms. Although C-type lectin domain family 3 member B (CLEC3B), an important member of C-type lectin, has been well documented in humans and several other higher vertebrates, little is currently known about this molecule in economically important marine fish species. In this study, through transcriptomic and BLAST screening, a novel CLEC3B gene was identified in the golden pompano (Trachinotus ovatus). The T. ovatus CLEC3B (ToCLEC3B) was subsequently characterized by bioinformatic analysis and compared with those reported in other species. In addition, the expression patterns of ToCLEC3B in different tissues under normal condition and at different times post pathogen challenge were assessed. Furthermore, the agglutinating activity of ToCLEC3B with and without Ca2+ against different bacteria and blood cells of donor species were verified using the recombinant T. ovatus CLEC3B (rToCLEC3B). Our results demonstrated that ToCLEC3B is a Ca2+-dependent galactose-binding lectin with a single copy of carbohydrate recognition domain (CRD). Similar to CLEC3B reported in other species, the CRD domain of ToCLEC3B consists of two α-helices, six ß-sheets, and four loops, forming two Ca2+- and a galactose-binding sites. According to the phylogenetic analysis, the ToCLEC3B was highly similar (similarity at 95.00%) to that of its relative, the greater amberjack (Seriola dumerili). The expression of ToCLEC3B was detected in all tissues examined under normal condition and was significantly up-regulated by injection of pathogenic microbes. In addition, the rToCLEC3B exhibited strong agglutinating activity against different bacteria and blood cells of donor species in the presence of Ca2+. Our results indicate that ToCLEC3B is a constitutive and inducible acute-phase immune factor in the host's innate immune response of T. ovatus.


Assuntos
Proteínas de Peixes , Perciformes , Humanos , Animais , Proteínas de Peixes/química , Filogenia , Peixes , Imunidade Inata/genética
17.
Adv Healthc Mater ; 12(29): e2301799, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611966

RESUMO

Nanoplastics (NPs) may pass through the blood-brain barrier, giving rise to serious concerns about their potential toxicity to the brain. In this study, the effects of NPs exposure on learning and memory, the primary cognitive functions of the brain, are assessed in zebrafish with classic T-maze exploration tasks. Additionally, to reveal potential affecting mechanisms, the impacts of NPs exposure on brain aging, oxidative damage, energy provision, and the cell cycle are evaluated. The results demonstrate that NP-exposed zebrafish takes significantly longer for their first entry and spends markedly less time in the reward zone in the T-maze task, indicating the occurrence of learning and memory deficits. Moreover, higher levels of aging markers (ß-galactosidase and lipofuscin) are detected in the brains of NP-exposed fish. Along with the accumulation of reactive free radicals, NP-exposed zebrafish suffer significant levels of brain oxidative damage. Furthermore, lower levels of Adenosine triphosphate (ATP) and cyclin-dependent kinase 2 and higher levels of p53 are observed in the brains of NP-exposed zebrafish, suggesting that NPs exposure also results in a shortage of energy supply and an arrestment of the cell cycle. These findings suggest that NPs exposure may pose a severe threat to brain health, which deserves closer attention.


Assuntos
Nanopartículas , Poliestirenos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Peixe-Zebra/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Estresse Oxidativo , Envelhecimento , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Nanopartículas/metabolismo
18.
Environ Pollut ; 334: 122244, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482340

RESUMO

Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.


Assuntos
Poluentes Ambientais , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/fisiologia , Poluentes Ambientais/farmacologia , Cálcio/farmacologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo
19.
Environ Toxicol Pharmacol ; 101: 104208, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390575

RESUMO

Since most marine invertebrates adopted external fertilisation, their fertilisation process is particularly vulnerable to aquatic pollutants. Both antimicrobial ingredients and microplastics (MPs) are ubiquitous in aquatic environments; however, their synergistic effects on the fertilisation of marine invertebrates remain unclear. Therefore, in this study, the fertilisation toxicity of MPs and triclosan (TCS), alone and in combination, was investigated in the broadcast spawning bivalve Tegillarca granosa. Results showed that MPs and TCS significantly suppressed the fertilisation success of T. granosa. As the fertilisation success of broadcast spawning invertebrates depends on successful gamete collisions, gamete fusion, and egg activation, sperm swimming velocity, viability, gamete collision probability, ATP status, and ion-transport enzyme activities were also analysed to further ascertain the underlying toxicity mechanisms. In summary, our findings indicate that the presence of MPs may enhance the fertilisation toxicity of TCS by hampering sperm-egg collision probability, reducing gamete fusion efficiency, and restricting Ca2+ oscillation formation.


Assuntos
Bivalves , Triclosan , Poluentes Químicos da Água , Animais , Masculino , Microplásticos , Plásticos/toxicidade , Triclosan/toxicidade , Sêmen , Bivalves/fisiologia , Fertilização , Organismos Aquáticos , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Technol ; 57(24): 9043-9054, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276532

RESUMO

The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 µg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.


Assuntos
Glândula Tireoide , Poluentes Químicos da Água , Animais , Glândula Tireoide/química , Glândula Tireoide/metabolismo , Peixe-Zebra , Fígado , Fosfatos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA