Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(4): 1568-1574, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38164649

RESUMO

The use of an appropriate preparation route is the key to immobilize active molecules into a host matrix with high loadings and stability. Herein, we demonstrate a simple and general strategy to immobilize ferrocene and its derivatives into ZIF-8 with high loadings of up to 4.3% Fe content. The unique host pore structure allows for the stabilization of guest molecules and effectively prevents their leaching. As a result, the obtained electrocatalysts exhibit competitive oxygen evolution reaction (OER) catalytic performance. Optimized Fc-CHO/ZIF-8 requires only a low overpotential of 238 mV to achieve 10 mA cm-2, along with a relatively small Tafel slope of 44.4 mV dec-1. This performance is superior to that of commercial IrO2, suggesting its potential application in electrochemical energy conversion.

3.
Sci Rep ; 11(1): 22567, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799616

RESUMO

Yixinyin, the traditional Chinese medicine, has the effects of replenishing righteous qi, and promoting blood circulation to eliminate blood stagnation. It is often used to treat patients with acute myocardial infarction (MI). The purpose of our study is to explore the key components and targets of Yixinyin in the treatment of MI. In this study, we analyzed gene expression data and clinical information from 248 samples of MI patients with the GSE34198, GSE29111 and GSE66360 data sets. By constructing a weighted gene co-expression network, gene modules related to myocardial infarction are obtained. These modules can be mapped in Yixinyin PPI network. By integrating differential genes of healthy/MI and unstable angina/MI, key targets of Yixinyin for the treatment of myocardial infarction were screened. We validated the key objectives with external data sets. GSEA analysis is used to identify the biological processes involved in key targets. Through molecular docking screening, active components that can combine with key targets in Yixinyin were obtained. In the treatment of myocardial infarction, we have obtained key targets of Yixinyin, which are ALDH2, C5AR1, FOS, IL1B, TLR2, TXNRD1. External data sets prove that they behave differently in the healthy and MI (P < 0.05). GSEA enrichment analysis revealed that they are mainly involved in pathways associated with myocardial infarction, such as viral myocarditis, VEGF signaling pathway and type I diabetes mellitus. The docking results showed that the components that can be combined with key targets in YixinYin are Supraene, Prostaglandin B1, isomucronulatol-7,2'-di-O-glucosiole, angusifolin B, Linolenic acid ethyl ester, and Mandenol. For that matter, they may be active ingredients of Yixinyin in treating MI. These findings provide a basis for the preliminary research of myocardial infarction therapy in traditional Chinese medicine and provide ideas for the design of related drugs.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Farmacologia em Rede , Estudos de Casos e Controles , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais
4.
RSC Adv ; 11(24): 14426-14433, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423959

RESUMO

Dimethyl ether (DME) can be directly synthesized from carbon dioxide and hydrogen by mixing methanol synthesis catalysts and methanol dehydration catalysts. The activity and selectivity of the catalyst can be greatly affected by the promoter; herein, we presented a series of CuO-ZnO-Ga2O3/HZSM-5 hybrid catalysts, which were prepared by the coprecipitation method. The effect of the Ga2O3 content on the structure and performance of the Ga-promoted Cu-ZnO/HZSM-5 based catalysts was thoroughly investigated. The results showed that the addition of Ga2O3 significantly increased specific surface areas and Cu areas, decreased the size of Cu particles, maintained the proportion of Cu+/Cu0 on the surface of the catalyst, and strengthened the metal-support interaction, resulting in high catalytic performance.

5.
Nat Commun ; 11(1): 4098, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796863

RESUMO

Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as self-catalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO2 and CH4) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO2 hydrogenation; the Ni-SCR efficiently produces syngas (CO/H2) by CO2 reforming of CH4. Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology.

6.
Chemistry ; 23(34): 8252-8261, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28421629

RESUMO

Heteroatom doping is a promising approach to improve the properties of carbon materials for customized applications. Herein, a series of Cu catalysts supported on boron-doped carbon nanotubes (Cu/xB-CNTs) were prepared for the hydrogenation of dimethyl oxalate (DMO) to ethanol. The structure and chemical properties of boron-doped catalysts were characterized by XRD, TEM, N2 O pulse adsorption, CO chemisorption, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption, which revealed that doping boron into CNT supports improved the Cu dispersion, strengthened the interaction of Cu species with the CNT support, introduced more surface acid sites, and increased the surface area of Cu0 and especially Cu+ sites. Consequently, the catalytic activity and stability of the catalysts were greatly enhanced by boron doping. 100 % DMO conversion and 78.1 % ethanol selectivity could be achieved over the Cu/1B-CNTs catalyst, the ethanol selectivity of which was almost 1.7 times higher than that of the catalyst without boron doping. These results suggest that doping CNTs with boron is an efficient approach to improve the catalytic performance of CNT-based catalysts for hydrogenation of DMO. The boron-doped CNT-based catalyst with improved ethanol selectivity and catalytic stability will be helpful in the development of efficient Cu catalysts supported on non-silica materials for selective hydrogenation of DMO to ethanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA