Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
PeerJ ; 12: e17395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784392

RESUMO

Objective: We compared the effects of early and delayed rehabilitation on the function of patients after rotator cuff repair by meta-analysis to find effective interventions to promote the recovery of shoulder function. Methods: This meta-analysis was registered in PROSPERO (CRD42023466122). We manually searched the randomized controlled trials (RCTs) in the Cochrane Library, Pubmed, Cochrane Library, EMBASE, the China National Knowledge Infrastructure (CNKI), the China VIP Database (VIP), and the Wanfang Database to evaluate the effect of early and delayed rehabilitation after arthroscopic shoulder cuff surgery on the recovery of shoulder joint function. Review Manager 5.3 software was used to analyze the extracted data. Then, the PEDro scale was employed to appraise the methodological quality of the included research. Results: This research comprised nine RCTs and 830 patients with rotator cuff injuries. According to the findings of the meta-analysis, there was no discernible difference between the early rehabilitation group and the delayed rehabilitation group at six and twelve months after the surgery in terms of the VAS score, SST score, follow-up rotator cuff healing rate, and the rotator cuff retear rate at the final follow-up. There was no difference in the ASES score between the early and delayed rehabilitation groups six months after the operation. However, although the ASES score in the early rehabilitation group differed significantly from that in the delayed rehabilitation group twelve months after the operation, according to the analysis of the minimal clinically important difference (MCID), the results have no clinical significance. Conclusions: The improvement in shoulder function following arthroscopic rotator cuff surgery does not differ clinically between early and delayed rehabilitation. When implementing rehabilitation following rotator cuff repair, it is essential to consider the paradoxes surrounding shoulder range of motion and tendon anatomic healing. A program that allows for flexible progression based on the patient's ability to meet predetermined clinical goals or criteria may be a better option.


Assuntos
Artroscopia , Recuperação de Função Fisiológica , Lesões do Manguito Rotador , Humanos , Artroscopia/reabilitação , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/reabilitação , Manguito Rotador/cirurgia , Amplitude de Movimento Articular , Fatores de Tempo , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
2.
Virol Sin ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768712

RESUMO

Increasing evidences suggest that the methyltransferase NSUN2 catalyzes 5-methylcytosine (m5C) modifications on viral RNAs, which are essential for the replication of various viruses. Despite the function of m5C deposition is well characterized, other potential roles of NSUN2 in regulating viral replication remain largely unknown. In this study, the m5C modified residues catalyzed by NSUN2 on enterovirus 71 (EV71) RNAs were mapped. NSUN2, along with m5C modifications, played multiple roles during the EV71 life cycle. Functional m5C modified nucleotides increased the translational efficiency and stability of EV71 RNAs. Additionally, NSUN2 was found to target the viral protein VP1 for binding and promote its stability by inhibiting the ubiquitination. Furthermore, both viral replication and pathogenicity in mice were largely attenuated when functional m5C residues were mutated. Taken together, this study characterizes distinct pathways mediated by NSUN2 in regulating EV71 replication, and highlights the importance of its catalyzed m5C modifications on EV71 RNAs for the viral replication and pathogenicity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38761998

RESUMO

BACKGROUND: Previous study implied that local M2 polarization of macrophage promoted mucosal edema and exacerbates Th2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We thought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: RT-qPCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5 knockout mice were used to establish nasal polyp model with Th2 inflammation and investigate the effects of SIRT5 in macrophages on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophages markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5 deficiency mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages through promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting the alternative polarization of macrophage and thus provides a potential target for CRSwNP interventions.

4.
mBio ; 15(5): e0072924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624210

RESUMO

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


Assuntos
DNA Viral , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Integração Viral , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Integração Viral/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , DNA Viral/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Linhagem Celular Tumoral , Oncogenes/genética , Poliadenilação
5.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Assuntos
Proteínas Quinases Ativadas por AMP , Amidinas , Medicamentos de Ervas Chinesas , Animais , Peixe-Zebra , Estresse Oxidativo , Fadiga/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Antioxidantes , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
Front Physiol ; 15: 1348811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468701

RESUMO

Purpose: This research aims to study and compare the effects of moderate-intensity continuous exercise and accumulated exercise with different number of bouts on common carotid arterial stiffness and hemodynamic variables. Methods: Thirty healthy male adults were recruited to complete four trials in a randomized crossover design: no-exercise (CON); continuous exercise (CE, 30-min cycling); accumulated exercise including two or three bouts with 10-min rest intervals (AE15, 2 × 15-min cycling; AE10, 3 × 10-min cycling). The intensity in all the exercise trials was set at 45%-55% heart rate reserve. Blood pressure, right common carotid artery center-line velocity, and arterial inner diameter waveforms were measured at baseline and immediately after exercise (0 min), 10 min, and 20 min. Results: 1) The arterial stiffness index and pressure-strain elastic modulus of the CE and AE15 groups increased significantly at 0 min, arterial diameters decreased in AE15 and AE10, and all indicators recovered at 10 min. 2) The mean blood flow rate and carotid artery center-line velocity increased in all trials at 0 min, and only the mean blood flow rate of AE10 did not recover at 10 min. 3) At 0 min, the blood pressure in all trials was found to be increased, and the wall shear stress and oscillatory shear index of AE10 were different from those in CE and AE15. At 20 min, the blood pressure of AE10 significantly decreased, and the dynamic resistance, pulsatility index, and peripheral resistance of CE partially recovered. Conclusion: There is no significant difference in the acute effects of continuous exercise and accumulated exercise on the arterial stiffness and diameter of the carotid artery. Compared with continuous exercise, accumulated exercise with an increased number of bouts is more effective in increasing cerebral blood supply and blood pressure regulation, and its oscillatory shear index recovers faster. However, the improvement of blood flow resistance in continuous exercise was better than that in accumulated exercise.

7.
Phys Rev Lett ; 132(9): 090401, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489615

RESUMO

The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.

8.
J Virol ; 98(3): e0169523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38349085

RESUMO

Histone modifications function in both cellular and viral gene expression. However, the roles of acetyltransferases and histone acetylation in parvoviral infection remain poorly understood. In the current study, we found the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), promoted the replication and transcription of parvovirus minute virus of canines (MVC). Notably, the expression of host acetyltransferases KAT5, GTF3C4, and KAT2A was increased in MVC infection, as well as H4 acetylation (H4K12ac). KAT5 is not only responsible for H4K12ac but also crucial for viral replication and transcription. The viral nonstructural protein NS1 interacted with KAT5 and enhanced its expression. Further study showed that Y44 in KAT5, which may be tyrosine-phosphorylated, is indispensable for NS1-mediated enhancement of KAT5 and efficient MVC replication. The data demonstrated that NS1 interacted with KAT5, which resulted in an enhanced H4K12ac level to promote viral replication and transcription, implying the epigenetic addition of H4K12ac in viral chromatin-like structure by KAT5 is vital for MVC replication.IMPORTANCEParvoviral genomes are chromatinized with host histones. Therefore, histone acetylation and related acetyltransferases are required for the virus to modify histones and open densely packed chromatin structures. This study illustrated that histone acetylation status is important for MVC replication and transcription and revealed a novel mechanism that the viral nonstructural protein NS1 hijacks the host acetyltransferase KAT5 to enhance histone acetylation of H4K12ac, which relies on a potential tyrosine phosphorylation site, Y44 in KAT5. Other parvoviruses share a similar genome organization and coding potential and may adapt a similar strategy for efficient viral replication and transcription.


Assuntos
Lisina Acetiltransferase 5 , Infecções por Parvoviridae , Animais , Cães , Acetilação , Acetiltransferases/metabolismo , Cromatina , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Tirosina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Doenças do Cão/metabolismo , Doenças do Cão/virologia , Lisina Acetiltransferase 5/metabolismo
9.
Cell Death Dis ; 15(1): 39, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216565

RESUMO

Eukaryotic five-methylcytosine (m5C) is an important regulator of viral RNA splicing, stability, and translation. However, its role in HBV replication remains largely unknown. In this study, functional m5C sites are identified in hepatitis B virus (HBV) mRNA. The m5C modification at nt 1291 is not only indispensable for Aly/REF export factor (ALYREF) recognition to promote viral mRNA export and HBx translation but also for the inhibition of RIG-I binding to suppress interferon-ß (IFN-ß) production. Moreover, NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the addition of m5C to HBV mRNA and is transcriptionally downregulated by the viral protein HBx, which suppresses the binding of EGR1 to the NSUN2 promoter. Additionally, NSUN2 expression correlates with m5C modification of type I IFN mRNA in host cells, thus, positively regulating IFN expression. Hence, the delicate regulation of NSUN2 expression induces m5C modification of HBV mRNA while decreasing the levels of m5C in host IFN mRNA, making it a vital component of the HBV life cycle. These findings provide new molecular insights into the mechanism of HBV-mediated IFN inhibition and may inform the development of new IFN-α based therapies.


Assuntos
Vírus da Hepatite B , Replicação Viral , Vírus da Hepatite B/genética , Replicação Viral/genética , Antivirais/farmacologia , RNA Mensageiro/genética , Epigênese Genética
10.
J Back Musculoskelet Rehabil ; 37(1): 25-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37661865

RESUMO

BACKGROUND: Sedentary behavior is widespread among older adults and accelerates the decline of motor function. Nevertheless, there is insufficient evidence concerning the effectiveness of regular exercise in enhancing the same in sedentary older adults. OBJECTIVE: To compare the effects of 24 weeks of aerobic and combined aerobic-resistance exercise on the motor function of sedentary older adults. METHODS: Sixty healthy sedentary older (65-80 years) were randomly enrolled. Participants were randomly divided into 3 groups (1:1:1): aerobic exercise group (AEG), combined aerobic-resistance exercise group (CEG), and health education group (HEG). The training group underwent a five-day-a-week regimen, with each session lasting for 40 minutes (including 10 min warm-up and cool-down). HEG received only monthly health lectures. We assessed lower limb muscle strength (30-second sit-to-stand ability), single-dual task gait, static and dynamic balance functions at baseline and after 24 weeks of intervention using per-protocol analysis. RESULTS: Among 60 elderly healthy who were randomized (mean age 70.59 ± 3.31 years; 28 women (46%)), 42 (70%) completed the evaluation after 24 weeks. Both the aerobic exercise and combined aerobic-resistance exercise groups exhibited improved 30-second sit-to-stand ability, static balance in closed-eye standing mode, and dynamic balance (P< 0.05). However, there were no statistically significant changes in the single-task gait parameters of stride length, stride width, and stride speed (P> 0.05). Additionally, compared to the aerobic exercise group, the combined exercise group showed an increase in dual-task gait speed and medial and lateral dynamic stability indices (P< 0.05). CONCLUSION: Both the aerobic exercise and combined aerobic-resistance exercise programs are effective in enhancing lower limb muscle strength, dynamic balance, and static balance while standing with eyes closed in sedentary older adults. Furthermore, the combined aerobic-resistance exercise program is more effective in improving dual-task gait speed as well as medial and lateral dynamic balance.


Assuntos
Treinamento Resistido , Humanos , Feminino , Idoso , Treinamento Resistido/métodos , Equilíbrio Postural/fisiologia , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Marcha/fisiologia
11.
PLoS One ; 18(12): e0295807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096147

RESUMO

In the application of driverless technology, current traffic sign recognition methods are susceptible to the influence of ambient light interference, target size changes and complex backgrounds, resulting in reduced recognition accuracy. To address these challenges, this study introduces an optimisation algorithm called ETSR-YOLO, which is based on the YOLOv5s algorithm. First, this study improves the path aggregation network (PANet) of YOLOv5s to enhance multi-scale feature fusion by generating an additional high-resolution feature layer to improve the recognition of YOLOv5s for small-sized objects. Second, the study introduces two improved C3 modules that aim to suppress background noise interference and enhance the feature extraction capabilities of the network. Finally, the study uses the Wise-IoU (WIoU) function in the post-processing stage to improve the learning ability and robustness of the algorithm to different samples. The experimental results show that ETSR-YOLO improves mAP@0.5 by 6.6% on the Tsinghua-Tencent 100K (TT100K) dataset and by 1.9% on the CSUST Chinese Traffic Sign Detection Benchmark 2021 (CCTSDB2021) dataset. In the experiments conducted on the embedded computing platform, ETSR-YOLO demonstrates a short average inference time, thereby affirming its capability to deliver dependable traffic sign detection for intelligent vehicles operating in real-world traffic scenes. The source code and test results of the models used in this study are available at https://github.com/cbrook16/ETSR-YOLO.

12.
Viruses ; 15(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38140548

RESUMO

Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Humanos , Flavivirus/genética , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , RNA Subgenômico , Regiões 3' não Traduzidas , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Dengue/genética
13.
BMC Cancer ; 23(1): 1012, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864148

RESUMO

PURPOSE: Detecting tumor progression of glioma continues to pose a formidable challenge. The role of fibroblast activation protein (FAP) in gliomas has been demonstrated to facilitate tumor progression. Glioma-circulating biomarkers have not yet been used in clinical practice. This study seeks to evaluate the feasibility of glioma detection through the utilization of a serum FAP marker. METHODS: We adopted enzyme-linked immunosorbent assay (ELISA) technique to quantify the relative FAP level of serum autoantibodies in a cohort of 87 gliomas. The correlation between preoperative serum autoantibody relative FAP levels and postoperative pathology, including molecular pathology was investigated. A series of FAP tests were conducted on 33 cases of malignant gliomas in order to ascertain their efficacy in monitoring the progression of the disease in relation to imaging observations. To validate the presence of FAP expression in tumors, immunohistochemistry was conducted on four gliomas employing a FAP-specific antibody. Additionally, the investigation encompassed the correlation between postoperative tumor burden, as assessed through volumetric analysis, and the relative FAP level of serum autoantibodies. RESULTS: A considerable proportion of gliomas exhibited a significantly increased level of serum autoantibody relative FAP level. This elevation was closely associated with both histopathology and molecular pathology, and demonstrated longitudinal fluctuations and variations corresponding to the progression of the disease The correlation between the rise in serum autoantibody relative FAP level and tumor progression and/or exacerbation of symptoms was observed. CONCLUSIONS: The measurement of serum autoantibody relative FAP level can be used to detect the disease as a valuable biomarker. The combined utilization of its detection alongside MR imaging has the potential to facilitate a more accurate and prompt diagnosis.


Assuntos
Glioma , Humanos , Glioma/patologia , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Autoanticorpos , Fibroblastos/metabolismo , Endopeptidases , Biomarcadores Tumorais/metabolismo
14.
Front Pharmacol ; 14: 1282357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886134

RESUMO

The biological clock system is an intrinsic timekeeping device that integrates internal physiology and external cues. Maintaining a healthy biological clock system is crucial for life. Disruptions to the body's internal clock can lead to disturbances in the sleep-wake cycle and abnormalities in hormone regulation, blood pressure, heart rate, and other vital processes. Long-term disturbances have been linked to the development of various common major diseases, including cardiovascular diseases, metabolic disorders, tumors, neuropsychiatric conditions, and so on. External factors, such as the diurnal rhythm of light, have a significant impact on the body's internal clock. Additionally, as an important non-photic zeitgeber, exercise can regulate the body's internal rhythms to a certain extent, making it possible to become a non-drug intervention for preventing and treating circadian rhythm disorders. This comprehensive review encompasses behavioral, physiological, and molecular perspectives to provide a deeper understanding of how exercise influences circadian rhythms and its association with related diseases.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37843994

RESUMO

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.

16.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883533

RESUMO

AIM: To elucidate the association between gut microbiota, short-chain fatty acids (SCFAs), and glucolipid metabolism in women with large for gestational age (LGA) infants. METHODS AND RESULTS: A single-center, observational prospective cohort study was performed at a tertiary hospital in Wenzhou, China. Normal pregnant women were divided into LGA group and appropriate for gestational age (AGA) group according to the neonatal birth weight. Fecal samples were collected from each subject before delivery for the analysis of gut microbiota composition (GMC) and SCFAs. Blood samples were obtained at 24-28 weeks of gestation age to measure fasting blood glucose and fasting insulin levels, as well as just before delivery to assess serum triglycerides, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein. The GMC exhibited differences at various taxonomic levels. Within the Firmicutes phylum, genus Lactobacillus, genus Clostridium, species Lactobacillus agil, and species Lactobacillus salivarius were enriched in the LGA group. Microbispora at genus level, Microbispora rosea at species level belonging to the Actinobacteria phylum, Neisseriales at order level, Bartonellaceae at family level, Paracoccus aminovorans, and Methylobacterium at genus level from the Proteobacteria phylum were more abundant in the LGA group. In contrast, within the Bacteroidetes phylum, Prevotella at genus level and Parabacteroides distasonis at species level were enriched in the AGA group. Although there were few differences observed in SCFA levels and most glucolipid metabolism indicators between the two groups, the serum HDL level was significantly lower in the LGA group compared to the AGA group. No significant relevance among GMC, SCFAs, and glucolipid metabolism indicators was found in the LGA group or in the AGA group. CONCLUSIONS: Multiple different taxa, especially phylum Firmicutes, genus Prevotella, and genus Clostridium, might play an important role in excessive fetal growth, and LGA might be associated with the lower serum HDL level.


Assuntos
Microbioma Gastrointestinal , Gestantes , Feminino , Humanos , Recém-Nascido , Gravidez , Peso ao Nascer , Ácidos Graxos Voláteis , Idade Gestacional , Recém-Nascido Grande para a Idade Gestacional , Estudos Prospectivos
17.
Sci Rep ; 13(1): 15954, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743369

RESUMO

The outbreak of the 2022 Russia-Ukraine conflict exacerbated the natural gas supply shortage in European countries. European countries restarted coal-fired power plants to maintain economic and social operations. The uneven distribution of coal resources in the world makes coal international trade inevitable. The intricate trade relations between trading countries have formed a coal trade network. When a country's coal exports are limited due to geopolitical factors, it will cause coal supply risks. The risk will spread to more countries along the trade network, eventually leading to the collapse of the trade network. This paper builds a crisis propagation model of the coal supply under the Russia-Ukraine conflict using the cascading failure model. The results showed that the Czech Republic, Ireland, Portugal, and Bulgaria become abnormal as the proportion of coal exports ß increases. When the Russian Federation reduced its coal exports by 80% and countries maintained only 10% coal exports against crisis, 23 European countries were the worst. Iceland, Ireland, Turkey and other countries were spread by the indirect risk and became abnormal countries. The Czech Republic and Bulgaria were spread by multiple risk and became abnormal countries.

18.
J Neurol Surg B Skull Base ; 84(4): 395-400, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405237

RESUMO

Objectives During craniotomy for cerebellopontine angle (CPA) lesions, the exact exposure of the margin of the venous sinuses complex remains an essential but risky part of the procedure. Here, we revealed the exact position of the asterion and sinus complex by combining preoperative image information and intraoperative cranial landmarks, and analyzed their clinic-image relationship. Methods Ninety-four patients who underwent removal of vestibular schwannoma (VS) through retrosigmoid craniotomies were enrolled in the series. To determine the exact location of the sigmoid sinus and the transverse sinus and sigmoid sinus junction (TSSJ), we used preoperative images, such as computed tomography (CT) and/or magnetic resonance imaging (MRI) combined with intraoperative anatomical landmarks. The distance between the asterion and the sigmoid sinus was measured using MRI T1 sequences with gadolinium and/or the CT bone window. Results In 94 cases of retrosigmoid craniotomies, the asterion lay an average of 12.71 mm on the posterior to the body surface projection to the TSSJ. Intraoperative cranial surface landmarks were used in combination with preoperative image information to identify the distance from the asterion to the sigmoid sinus at the transverse sinus level, allowing for an appropriate initial burr hole (the margin of the TSSJ). Conclusion By combining intraoperative anatomical landmarks and preoperative image information, the margin of the TSSJ, in particular, the inferior margin of the transverse sinus, can be well and thoroughly identified in the retrosigmoid approach.

19.
Viruses ; 15(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376654

RESUMO

The continuously emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made the global coronavirus disease 2019 (COVID-19) pandemic unpredictable. Since the beginning of the pandemic, densely populated South and Southeast Asia have suffered great losses due to multiple COVID-19 surges because of vaccine and other medical resource shortages. Therefore, it is crucial to closely monitor the SARS-CoV-2 epidemic and to understand the evolutionary and transmission characteristics of SARS-CoV-2 in these regions. Here, we document the evolution of epidemic strains in the Philippines, Pakistan, and Malaysia from late 2021 to early 2022. Our results confirmed the circulation of at least five SARS-CoV-2 genotypes in these countries in January 2022, when Omicron BA.2, with a detection rate of 69.11%, replaced Delta B.1.617 as the dominant strain. Single-nucleotide polymorphism analysis indicated the distinct evolutionary directions of the Omicron and Delta isolates, with S, Nsp1, and Nsp6 genes potentially playing a significant role in the host adaptation of the Omicron strain. These findings are able to provide insights for predicting the evolutionary direction of SARS-CoV-2 in terms of variant competition, developing multi-part vaccines, and to support the evaluation and adjustment of current surveillance, prevention, and control strategies in South and Southeast Asia.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , Malásia/epidemiologia , Pandemias
20.
Sci Rep ; 13(1): 8056, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198255

RESUMO

Autonomous driving has been widely applied in commercial and industrial applications, along with the upgrade of environmental awareness systems. Tasks such as path planning, trajectory tracking, and obstacle avoidance are strongly dependent on the ability to perform real-time object detection and position regression. Among the most commonly used sensors, camera provides dense semantic information but lacks accurate distance information to the target, while LiDAR provides accurate depth information but with sparse resolution. In this paper, a LiDAR-camera-based fusion algorithm is proposed to improve the above-mentioned trade-off problems by constructing a Siamese network for object detection. Raw point clouds are converted to camera planes to obtain a 2D depth image. By designing a cross feature fusion block to connect the depth and RGB processing branches, the feature-layer fusion strategy is applied to integrate multi-modality data. The proposed fusion algorithm is evaluated on the KITTI dataset. Experimental results demonstrate that our algorithm has superior performance and real-time efficiency. Remarkably, it outperforms other state-of-the-art algorithms at the most important moderate level and achieves excellent performance at the easy and hard levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA