Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.902
Filtrar
1.
Arch Acad Emerg Med ; 12(1): e31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721446

RESUMO

Introduction: Aneurysmal subarachnoid hemorrhage (SAH) constitutes a life-threatening condition, and identifying the ruptured aneurysm is essential for further therapy. This study aimed to evaluate the diagnostic accuracy of hypo-attenuating berry sign (HBS) observed on computed tomography (CT) scan in distinguishing ruptured aneurysms. Methods: In this diagnostic accuracy study, patients who had SAH and underwent non-enhanced brain CT scan were recruited. The HBS was defined as a hypo-attenuating area with an identifiable border in the blood-filled hyper-dense subarachnoid space. The screening performance characteristics of HBS in identifying ruptured aneurysms were calculated considering the digital subtraction angiography (DSA) as the gold standard. Results: A total of 129 aneurysms in 131 patients were analyzed. The overall sensitivity and specificity of HBS in the diagnosis of aneurysms were determined to be 78.7% (95%CI: 73.1% - 83.4%) and 70.7% (95%CI: 54.3% - 83.4%), respectively. Notably, the sensitivity increased to 90.9% (95%CI: 84.3% - 95.0%) for aneurysms larger than 5mm. The level of inter-observer agreement for assessing the presence of HBS was found to be substantial (kappa=0.734). The diagnostic accuracy of HBS in individuals exhibited enhanced specificity, sensitivity, and reliability when evaluating patients with a solitary aneurysm or assessing ruptured aneurysms. The multivariate logistic regression analysis revealed a statistically significant relationship between aneurysm size and the presence of HBS (odds ratios of 1.667 (95%CI: 1.238 - 2.244; p < 0.001) and 1.696 (95%CI: 1.231 - 2.335; p = 0.001) for reader 1 and reader 2, respectively). Conclusions: The HBS can serve as a simple and easy-to-use indicator for identifying a ruptured aneurysm and estimating its size in SAH patients.  .

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124394, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723467

RESUMO

A fast, simple and reagent-free detection method for aflatoxin B1 (AFB1) is of great significance to food safety and human health. Visible and near-infrared (Vis-NIR) spectroscopy was applied to the discriminant analysis of AFB1 excessive standard of peanut meal as feedstuff materials. Two types of excessive standard discriminant models based on spectral quantitative analysis with partial least squares (PLS) and direct pattern recognition with partial least squares-discrimination analysis (PLS-DA) were established, respectively. Multi-parameter optimization of Norris derivative filtering (NDF) was used for spectral preprocessing; the two-stage wavelength screening method based on equidistant combination-wavelength step-by-step phase-out (EC-WSP) was used for wavelength optimization. A rigorous sample experimental design of calibration-prediction-validation was utilized. The calibration and prediction samples were used for modeling and parameter optimization, and the selected model was validated using the independent validation samples. For quantitative analysis-based, the positive, negative and total recognition-accuracy rates in validation (RARV+, RARV-, and RARV) were 84.8 %, 74.6 % and 79.8 %, respectively; but, the relative root mean square error of prediction was as high as 51.0 %. For pattern recognition-based, the RARV+, RARV-, and RARV were 93.3 %, 90.5 % and 91.9 %, respectively. Moreover, the number of wavelengths N was drastically reduced to 17, and the discrete wavelength combination was in NIR overtone frequency region. The results indicated that, the EC-WSP-PLS-DA model achieved significantly better discrimination effect. Thus demonstrated that Vis-NIR spectroscopy has feasibility for the excessive standard discrimination of aflatoxin B1 in feedstuff materials.

3.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748375

RESUMO

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Assuntos
Carbono , Dopamina , Corantes Fluorescentes , Limite de Detecção , Polímeros Molecularmente Impressos , Nifedipino , Pontos Quânticos , Espectrometria de Fluorescência , Pontos Quânticos/química , Nifedipino/química , Nifedipino/análise , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Dopamina/urina , Dopamina/análise , Carbono/química , Espectrometria de Fluorescência/métodos , Humanos , Polimerização , Impressão Molecular , Comprimidos/análise
4.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730782

RESUMO

Bimetallic composites have a wide range of application prospects in various industries. Different bonding temperatures, as one of the influencing factors, directly affect the bonding effectiveness as well as the performance and application of the materials. Using metallurgical bonding techniques ensures a strong bond at the interface of bimetallic materials, resulting in high-quality composite pipe billets. This paper describes an Incoloy825/P110 steel bimetal composite material made by the solid-liquid composite method. By utilizing ProCAST 14.5 software for simulation and deriving theoretical formulas, an initial range of temperatures for bimetallic preparation has been tentatively determined. And this temperature range will be utilized for on-site experiments to prepare bimetallic samples. After the preparation process is completed, samples will be selected. The influence of the external mold temperature on the interface bonding of Incoloy825/P110 steel solid-liquid composite material is studied using an ultra-depth three-dimensional morphology microscope and a scanning electron microscope. Through research, the optimal preheating temperature range for the solid-liquid composite outer mold of Incoloy825/P110 bimetallic composite material has been determined. The casting temperature of the inner mold has a significant impact on the interface bonding of this bimetal composite material. As the casting temperature of the inner mold increases, the interface thickness gradually increases. At lower temperatures, the interface thickness is lower and the bonding is poorer. At higher temperatures, melting may occur, leading to coarse grains at the interface. When the temperatures of the inner and outer molds are within a certain range, a new phase appears at the interface. Indeed, it increases the strength of the interface bonding. Due to co-melting of the bimetal near the interface, element migration occurs, resulting in increased Ni and Cr content at the interface and enhanced corrosion resistance.

5.
ACS Omega ; 9(18): 20119-20128, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737085

RESUMO

A new biochar (N-BC) was fabricated by incorporating high-density positively charged quaternary ammonium groups into the pristine biochar without any adsorption for phosphate. N-BC can highly efficiently remove phosphate with an optimal pH of 5.0, a maximum experimental adsorption capacity of 30 mg of P/g, and an adsorption equilibrium time of 180 min. The predicted pore diffusion coefficient D (the diffused surface area of the adsorbate for unit time) for phosphate adsorption by N-BC was 5.3 × 10-9 cm2/s. N-BC can still capture phosphate in the copresence of anion Cl- with a molar concentration 50 times that of phosphate. The exhausted N-BC was completely regenerated using a 10 wt % NaOH solution and further reused without any observable loss in adsorption capacity. Moreover, N-BC yielded ∼324 bed volumes (BV) of wastewater containing 1 mg P/L phosphate and 50 mg/L Cl- before breakthrough occurring (<0.1 mg P/L in effluent) in a fixed-bed column operation system. The introduced quaternary ammonium groups covalently bound to biochar played a dominant role in phosphate sequestration by N-BC through forming the out-sphere complexation with phosphate. All results imply that it is of promising prospect for N-BC practical application for phosphate purification from waters. The present study provided a new strategy to expand the application of biochar, usually serving as an adsorbent for cationic pollutants, to the purification of anionic pollutants such as phosphate from waters.

6.
J Agric Food Chem ; 72(19): 11080-11093, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690996

RESUMO

Amyloid-like aggregation widely occurs during the processing and production of natural proteins, with evidence indicating its presence following the thermal processing of wheat gluten. However, significant gaps remain in understanding the underlying fibrillation mechanisms and structural polymorphisms. In this study, the amyloid-like aggregation behavior of wheat gluten and its components (glutenin and gliadin) during cooking was systematically analyzed through physicochemical assessment and structural characterization. The presence of amyloid-like fibrils (AFs) was confirmed using X-ray diffraction and Congo red staining, while Thioflavin T fluorescence revealed different patterns and rates of AFs growth among wheat gluten, glutenin, and gliadin. AFs in gliadin exhibited linear growth curves, while those in gluten and glutenin showed S-shaped curves, with the shortest lag phase and fastest growth rate (t1/2 = 2.11 min) observed in glutenin. Molecular weight analyses revealed AFs primarily in the 10-15 kDa range, shifting to higher weights over time. Glutenin-derived AFs had the smallest ζ-potential value (-19.5 mV) and the most significant size increase post cooking (approximately 400 nm). AFs in gluten involve interchain reorganization, hydrophobic interactions, and conformational transitions, leading to additional cross ß-sheets. Atomic force microscopy depicted varying fibril structures during cooking, notably longer, taller, and stiffer AFs from glutenin.


Assuntos
Amiloide , Culinária , Glutens , Triticum , Glutens/química , Triticum/química , Amiloide/química , Gliadina/química , Temperatura Alta , Agregados Proteicos , Peso Molecular , Difração de Raios X
7.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736386

RESUMO

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Assuntos
Anfotericina B , Contaminação de Medicamentos , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Anfotericina B/análise , Anfotericina B/química , Espectrometria de Massas/métodos
8.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
9.
Dalton Trans ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767505

RESUMO

Herein, we investigate the product type and distribution during the synthesis of azido-functionalized larger polyhedral oligomeric silsesquioxanes (POSSs) using 3-chloropropyl- and chloromethyldimethylsilylethyl-functionalized T8, T10, and T12 POSSs as precursors. Our findings indicate that cage rearrangement occurs for the 3-chloropropyl-functionalized POSS cages with a stability order of T12 > T10 > T8, while the chloromethyldimethylsilylethyl-functionalized POSS cages remain structurally intact after the nucleophilic substitution.

10.
JMIR Aging ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38771907

RESUMO

BACKGROUND: Duration of sleep has a crucial role in the development of physiological functions that impact health. Little is known about the associations between sleep duration and functional disability among the older adults in China. OBJECTIVE: This study aims to explore the associations between sleep duration and functional disabilities in the older population aged 65 years and above in China. METHODS: The data for this cross-sectional study were gathered from respondents aged 65 years and above who participated in the 2018 survey of China Health and Retirement Longitudinal Study, an ongoing nationwide longitudinal investigation of Chinese adults. The duration of sleep per night was obtained through face-to-face interviews. Functional disability was assessed using activities of daily living (ADL) and instrumental activities of daily living (IADL). The association between sleep duration and functional disability was assessed by multivariable generalized linear model. Restricted cubic spline model was used to explore the dose-response relationship between sleep duration and functional disability. RESULTS: In total, 5 519 participants [Male: 2 471 (44.77%)] were included in this study with a mean age of 73.67 years old, containing 2 800 (50.73%) functional disabled, 1 978 (35.83%) ADL disabled, and 2 299 (41.66%) IADL disabled older adults. After adjusted for potential confounders, individuals reported shorter sleep durations (≤ 4, 5, 6 hours) or longer sleep durations (8, 9, ≥ 10 hours) per night exhibited a notably increased risk of functional disability compared to those who with 7 hours (P < 0.05), which revealed a U-shape association between sleep duration and dysfunction. When sleep duration fell below 7 h, increased sleep duration was associated with a significantly lower risk of functional disability (odds ratio [OR], 0.85; 95% confidence interval [CI], 0.79-0.91; P < 0.001). When sleep duration exceeded 7 h, the risk of functional disability (OR, 1.16; 95% CI, 1.05-1.29; P < 0.001) would increase facing prolonged sleep duration. CONCLUSIONS: Shorter and longer sleep duration was associated with a higher risk of functional disability among the aged 65 and above Chinese adults. Future studies are needed to explore intervention strategies about sleep duration especially focus on functional disability.

11.
Bioact Mater ; 38: 346-373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764449

RESUMO

Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.

12.
J Pain Res ; 17: 1737-1744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764607

RESUMO

Background: As the latest endoscopic spine surgery, percutaneous endoscopic interlaminar discectomy (PEID) and unilateral biportal endoscopic (UBE) discectomy have distinct technical characteristics. This study aimed to evaluate the clinical outcomes of PEID and UBE discectomy in the treatment of single-level lumbar disc herniation (LDH). Methods: Between February 2019 and April 2022, 115 patients with single-level LDH at L4-5 or L5-S1 received PEID or UBE discectomy. The patients were separated into two groups based on the surgical method used: Group 1 (the PEID group) (n = 60) and Group 2 (the UBE group) (n = 55). Various parameters, including operative time, hospitalization time, fluoroscopy frequency, total costs, complications, visual analogue scale (VAS), and Oswestry Disability Index (ODI), were evaluated and compared between the two groups. Results: There were no significant differences in the VAS and ODI scores in 12 months after the operation between two groups (P > 0.05). However, the VAS of lower back pain on the first day after the operation in Group 2 (2.53±0.89) was higher than that in Group 1 (2.19±0.74) (P < 0.05). There were no significant differences in the operation time and incidence of complications between two groups (P > 0.05). But total costs in Group 2 (43,121±4280) were significantly higher than those in Group 1 (30,069±3551) (P < 0.05). Conclusion: Both UBE and PEID procedures have similar efficacy in alleviating pain and improving functional ability in patients with LDH. However, UBE surgery results in higher costs than PEID surgery.

13.
Mater Today Bio ; 26: 101078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38765244

RESUMO

Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of in vivo experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.

15.
J Stroke Cerebrovasc Dis ; : 107770, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768667

RESUMO

BACKGROUND: Moyamoya disease (MMD) is characterized by progressive stenosis or occlusion of the terminal portions of the bilateral internal carotid arteries. A Japanese survey in 2003 reported an incidence and prevalence of MMD of 0.54 and 6.03 per 100,000 people, respectively, showing an upward trend over previous surveys. An update to these estimates is therefore warranted. Additionally, evidence is lacking on trends in revascularization and antiplatelet therapy in MMD patients. METHODS: We conducted a population-based descriptive study using a Japanese claims database. From fiscal year (FY) 2015 to 2019, we standardized the incidence and prevalence estimates of MMD to the 2015 Japanese census population by age and sex. We also estimated the 1-year cumulative incidence of revascularization among incident MMD patients and the proportion of prevalent MMD patients receiving antiplatelet therapy in each FY. RESULTS: The age-standardized male-to-female ratio of both incident and prevalent MMD patients was approximately 1:2. Standardized incidence and prevalence of MMD per 100,000 population increased slightly from 1.8 to 2.4 and 14.7 to 17.6, respectively. The 1-year cumulative incidence of revascularization among incident MMD patients varied between 21.9% and 28.9%. Among prevalent MMD patients, 36.6% to 39.0% received antiplatelet therapy. CONCLUSIONS: The incidence and prevalence of MMD in Japan from FY 2015 to 2019 were higher than those estimated in 2003. The trends in revascularization and antiplatelet therapy identified in this study will be useful in further improving the quality of MMD clinical practice.

16.
Phys Chem Chem Phys ; 26(20): 14691-14704, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716569

RESUMO

The properties and applications of ionic liquids (ILs) have been widely investigated when they are confined within nanochannels such as carbon nanotubes (CNTs). The confined ILs exhibit very different properties from their bulk state due to a nanoconfinement effect, which plays an important role in the performances of devices with ILs. In this work, we studied the effect of the charge carried by CNTs on confined ILs inside CNTs using molecular dynamics simulations. In charged CNTs, cations and anions are distributed separately along the radial directions, and the transition of orientations of the cations between parallel and vertical to CNTs occurs by changing the charge state of CNTs. The number of hydrogen bonds (HBs) formed by the confined ILs can be reduced by switching the surface charge of CNTs from positive to negative due to the contact modes between cations and anions as well as the distributions of cations in CNTs. The diffusivities along and vertical to the axial direction of CNTs were found to be non-monotonic owing to the "trade-off" effect from both ion pair interlocking and anchoring ILs on the CNT walls. Additionally, the region-dependent dynamics of ILs were also related to the intermolecular interactions in different regions of CNTs. Furthermore, the vibrational modes of ILs were obviously influenced in highly charged CNTs as determined by calculating the density of vibrational states, which demonstrated the transitions in the structure and interactions. The density distributions changed from single layer to double layers when increasing the pore size of neutral CNTs while the hydrogen bonds exhibited a non-monotonic tendency versus the pore sizes. Our results might help to understand the structure and dynamics of confined ILs as well as aid optimizing the performance of devices with ILs.

17.
Science ; 384(6697): 776-781, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753798

RESUMO

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.


Assuntos
Algoritmos , DNA , Nanotecnologia , DNA/química , Nanotecnologia/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanoestruturas/química , Conformação de Ácido Nucleico , Microscopia Eletrônica de Varredura
18.
Sci Total Environ ; 933: 172956, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719036

RESUMO

Paddy soil, as an ecosystem with alternating drained and flooded conditions, microorganisms in it can maintain the stability of the ecosystem by regulating the composition and diversity of its species when disturbed by external biotic or abiotic factors, and the regulatory mechanism in this process is a controversial topic in ecological research. In this study, we investigate the effects of pigeon feces addition on bacterial communities in three textured soils, two conditions (drained and flooded) based on microcosm experiment using high-throughput sequencing techniques. Our results show that pigeon feces addition reduced environmental heterogeneity and community diversity, both under flooded and drained conditions and in all textured soils, thereby decreasing the effectiveness of environmental selection and increasing diffusion limitations among bacterial communities. Bacterial communities are altered by environmental factors including total organic carbon, available nitrogen, total phosphorus, available phosphorus and available potassium, resulting in the formation of new community structures and dominant genera. Bacteria from pigeon feces did not colonize the original soil in large numbers, and the soil bacterial community structure changed, with some species replaced the indigenous ones as new dominant genera. As nutrient diffusion increases the nutrient content of the soil, this does not lead to species extinction; however, nutrient diffusion creates new nutrient preferences of the bacterial community, which causes direct competition between species, and contributes to the extinction and immigration species. Our results suggest that species replacement is an adaptive strategy of soil bacterial community in response to dispersal of pigeon feces, and that bacterial community regulate diversity and abundance of the community by enhancing species extinction and immigration, thereby preventing bacteria in pigeon feces from colonizing paddy soils and maintaining ecosystem stability.

19.
Neurosci Lett ; 832: 137800, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38697601

RESUMO

Lipopolysaccharide (LPS) is an important neurotoxin that can cause inflammatory activation of microglia. ZC3H12D is a novel immunomodulator, which plays a remarkable role in neurological pathologies. It has not been characterized whether ZC3H12D is involved in the regulation of microglial activation. The aim of this study was to investigate the role of ZC3H12D in LPS-induced pro-inflammatory microglial activation and its potential mechanism. To elucidate this, we established animal models of inflammatory injury by intraperitoneal injection of LPS (10 mg/kg). The results of the open-field test showed that LPS caused impaired motor function in mice. Meanwhile, LPS caused pro-inflammatory activation of microglia in the mice cerebral cortex and inhibited the expression of ZC3H12D. We also constructed in vitro inflammatory injury models by treating BV-2 microglia with LPS (0.5 µg/mL). The results showed that down-regulated ZC3H12D expression was associated with LPS-induced pro-inflammatory microglial activation, and further intervention of ZC3H12D expression could inhibited LPS-induced pro-inflammatory activation of microglia. In addition, LPS activated the TLR4-NF-κB signaling pathway, and this process can also be reversed by promoting ZC3H12D expression. At the same time, the addition of resveratrol, a nutrient previously proven to inhibit pro-inflammatory microglial activation, can also reverse this process by increasing the expression of ZC3H12D. Summarized, our data elucidated that ZC3H12D in LPS-induced pro-inflammatory activation of brain microglia via restraining the TLR4-NF-κB pathway. This study may provide a valuable clue for potential therapeutic targets for neuroinflammation-related injuries.


Assuntos
Lipopolissacarídeos , Microglia , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Inflamação/metabolismo , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL
20.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705072

RESUMO

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Assuntos
Técnicas Biossensoriais , Exossomos , Ouro , Análise Espectral Raman , Humanos , Exossomos/química , Ouro/química , Análise Espectral Raman/métodos , Fosfolipídeos/química , Fosfolipídeos/urina , Limite de Detecção , Impressão Molecular , Polímeros Molecularmente Impressos/química , Epitopos/imunologia , Epitopos/química , Nanopartículas Metálicas/química , Tetraspanina 29/urina , Tetraspanina 29/análise , Anticorpos Imobilizados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA