Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
J Hazard Mater ; 476: 135157, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002488

RESUMO

Massive use of plastic products has caused their accumulation in soils, releasing large amounts of endogenous plastic additives (e.g., benzotriazole ultraviolet stabilizers, in short BZT-UVs) into terrestrial ecosystems. However, their plant toxicity is little known. Herein, we investigated the occurrence of BZT-UVs in contaminated farmland and selected three BZT-UV congeners to explore their toxic effects on the antioxidant, photosynthetic, and metabolic perturbation on rice (Oryza sativa). Results showed that the mean concentrations of ∑BZT-UVs in soil and plant samples were 180.7 ng/g dw and 156.4 ng/g dw, respectively. UV-P, UV-327 and UV-328 were the dominant BZT-UV congeners in both of soils and plants. Three BZT-UV congeners caused oxidative damages to rice in a dose-dependent manner, especially for UV-328. Functional genes involved in chlorophyll synthetases was inhibited by over 50 % under the stress of BZT-UVs, whereas those responsible for chlorophyll degradation were obviously promoted. The chlorophyll content was thus decreased, leading to a weakened photosynthesis system and an unbalanced carbon metabolism. The transcriptome and metabolome proved that the flux of carbohydrate metabolism and amino acid metabolism were obviously promoted in plants induced by BZT-UVs, which could inhibit the growth of rice. These findings offered insights into the coordinated responses of plants and advanced our understanding of potential ecological risks of BZT-UVs to terrestrial ecosystems.

2.
Respir Physiol Neurobiol ; : 104303, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029565

RESUMO

The airway epithelium is located at the interactional boundary between the external and internal environments of the organism and is often exposed to harmful environmental stimuli. Inflammatory response that occurs after airway epithelial stress is the basis of many lung and systemic diseases. Chloride intracellular channel 4 (CLIC4) is abundantly expressed in epithelial cells. The purpose of this study was to investigate whether CLIC4 is involved in the regulation of lipopolysaccharide (LPS)-induced inflammatory response in airway epithelial cells and to clarify its potential mechanism. Our results showed that LPS induced inflammatory response and decreased CLIC4 levels in vivo and in vitro. CLIC4 silencing aggravated the inflammatory response in epithelial cells, while overexpression of CLIC4 combined with LPS exposure significantly decreased the inflammatory response compared with cells exposed to LPS without CLIC4 overexpression. By labeling intracellular chloride ions with chloride fluorescent probe MQAE, we showed that CLIC4 mediated intracellular chloride ion-regulated LPS-induced cellular inflammatory response.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39011736

RESUMO

The van der Waals semiconductor Bi4O4SeCl2 has recently attracted great interest due to its extremely small lattice thermal conductivity, which may find possible application in the field of energy conversion. Herein, we accurately predict the thermoelectric transport properties of Bi4O4SeCl2 using first-principles calculations and Boltzmann transport theory, where the carrier relaxation time is obtained by fully considering the electron-phonon coupling. It is found that a maximum p-type ZT value of 3.1 can be reached at 1100 K along the in-plane direction, which originates from increased Seebeck coefficient induced by multivalley band structure, as well as enhanced electrical conductivity caused by relatively stronger intralayer bonding. Besides, it is interesting to note that comparable p- and n-type ZT values can be realized in certain temperature regions, which is very desirable in the fabrication of thermoelectric modules.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39038348

RESUMO

Context: Man-made disasters and natural disasters bring huge losses to human life and property. High-quality nursing teams play an important role in reducing casualty and disability rates in disaster areas, reducing the prognosis of the injured, accelerating community recovery and even promoting social rehabilitation. This work aimed to analyze the current situation and influencing factors of disaster emergency rescue (DER) of nurses in Hunan Province by surveying their knowledge, attitude, and practice of DER in Grade A hospitals. Methods: 1260 nurses working in 13 Grade A hospitals in Hunan Province from March to October 2022 were selected as subjects by a random sampling method and conducted by a questionnaire survey. The general data of the subjects were collected by "behaviors", forming the "nurses' knowledge, attitude, and practice questionnaire, and their DER knowledge, attitude and behavior were evaluated. Results: 1260 questionnaires were distributed, and 1,256 were effectively received, with a recovery rate of 99.68%. The total score of DER-related knowledge of 1.256 investigators was 136.82 ± 9.73 points. Among them, the highest and lowest scores were observed in the Triage (26.79 ± 2.09 points) and the sanitary and anti-epidemic (17.97 ± 1.28 points). The scores of DER attitude of 1256 respondents were close, which were arranged as about 3.87 ± 0.39 (with a range of 4.34 ~ 4.20). 1,256 investigators expressed the highest score in participating in the DER-related courses (4.93 ± 0.34 points) and the lowest score in participating in the on-site DER (2.01 ± 0.13 points). The results showed that they were correlated with gender, educational background, working years, department, and out-of-hospital emergency rescue experience (P ≤ .05), but not with age. The scores of DER-related knowledge and behaviors of hospital nurses were higher in men than in women. The higher the education, the higher the score, and the more the working years. Emergency and ICU nurses scored higher than those in other general departments. In addition, nurses with out-of-hospital emergency rescue experience scored higher than those without. Conclusion: The overall DER-related knowledge, attitude, and practice of hospital nurses is not high. Nursing managers should incorporate disaster nursing into emergency rescue nurses' training, strengthen clinical nurses' training and exercise in DER-related knowledge, pay special attention to DER drills and practices, and provide reasonable and correct DER guidance. Furthermore, it should cultivate the noble social citizenship qualities of clinical nursing nurses, such as the sense of mission to save the dying and heal the injured, the sense of satisfaction in realizing self-worth, and the sense of social responsibility. In addition, it is suggested that a reasonable incentive and reward system be established to encourage hospital nurses to participate in the DER. Due to the limitations of this study, the sample size can be expanded and included in the nurse interview considered in the future to supplement the survey data and further study and analyze nurses' rescue mentality, cognitive influencing factors, and intervention measures to provide more reference for human resource reserve and management of disaster rescue care.

5.
Environ Sci Technol ; 58(26): 11280-11291, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898567

RESUMO

Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation. Omics analyses consistently targeted the light reaction phase of photosynthesis as the primary process impacted, emphasizing the particular vulnerability of photosystem II (PS II) to the antibiotic stress, as manifested by significant interruptions in the photon-mediated electron transport and O2 production. PS II center D2 protein (psbD) was identified as the primary target of the tested antibiotics, with the fourth-generation quinolones displaying the highest binding affinity to psbD. A predictive machine learning method was constructed to pinpoint antibiotic substructures that conferred enhanced affinity. As antibiotic generations evolve, the positive contribution of the carbonyl and carboxyl groups on the 4-quinolone core ring in the affinity interaction gradually intensified. This research illuminates the photosynthetic toxicities of antibiotics across generations, offering insights for the risk assessment of antibiotics and highlighting their potential threats to carbon fixation of agroecosystems.


Assuntos
Antibacterianos , Oryza , Fotossíntese , Complexo de Proteína do Fotossistema II , Quinolonas , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Antibacterianos/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo
6.
Br J Pharmacol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853468

RESUMO

BACKGROUND AND PURPOSE: Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH: The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS: The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS: Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.

7.
MedComm (2020) ; 5(7): e621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938285

RESUMO

Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p-Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.

8.
Nature ; 631(8019): 164-169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926580

RESUMO

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitratos , Fixação de Nitrogênio , Nódulos Radiculares de Plantas , Fatores de Transcrição , Zinco , Zinco/metabolismo , Fatores de Transcrição/metabolismo , Nitratos/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/genética , Simbiose , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
9.
J Hazard Mater ; 473: 134718, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797079

RESUMO

Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Metais Pesados , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 753-762, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38602002

RESUMO

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin ß1, and integrin ß4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.


Assuntos
Brônquios , Células Epiteliais , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , alfa Catenina/metabolismo , alfa Catenina/genética , Brônquios/citologia , Brônquios/metabolismo , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Epiteliais/metabolismo , Ozônio , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Behav Pharmacol ; 35(4): 211-226, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651984

RESUMO

Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.


Assuntos
Depressão , Hipocampo , Estresse Psicológico , Zimosan , Animais , Zimosan/farmacologia , Camundongos , Estresse Psicológico/imunologia , Masculino , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Citocinas/metabolismo , Comportamento Animal/efeitos dos fármacos , Derrota Social , Imunização/métodos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Minociclina/farmacologia , Relação Dose-Resposta a Droga
13.
Jpn J Infect Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684428

RESUMO

We report the isolation of Helicobacter cholecystus from a positive blood culture from a 58-year-old man in China who had bacteremia and acute cholecystitis. The patient's condition improved after symptomatic support treatment and subtotal cholecystectomy. This finding suggests that H. cholecystus should be considered as potential human pathogens.

14.
Pestic Biochem Physiol ; 200: 105785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582570

RESUMO

This study investigates the effects of chlorantraniliprole (CAP) pesticide stress on oilseed rape through comprehensive pot experiments. Assessing CAP residue variations in soil and oilseed rape (Brassia campestris L.), enzyme activities (POD, CPR, GST), and differential metabolites, we unveil significant findings. The average CAP residue levels were 18.38-13.70 mg/kg in unplanted soil, 9.94-6.30 mg/kg in planted soil, and 0-4.18 mg/kg in oilseed rape samples, respectively. Soil microbial influences and systemic pesticide translocation into oilseed rape contribute to CAP residue variations. Under the influence of CAP stress, oilseed rape displays escalated enzyme activities (POD, CPR, GST) and manifests 57 differential metabolites. Among these, 32 demonstrate considerable downregulation, mainly impacting amino acids and phenolic compounds, while 25 exhibit noteworthy overexpression, primarily affecting flavonoid compounds. This impact extends to 24 metabolic pathways, notably influencing amide biosynthesis, as well as arginine and proline metabolism. These findings underscore the discernible effects of CAP pesticide stress on oilseed rape.


Assuntos
Brassica napus , Praguicidas , ortoaminobenzoatos , Praguicidas/metabolismo , Brassica napus/metabolismo , Solo
15.
Front Plant Sci ; 15: 1355849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606075

RESUMO

Superoxide dismutase (SOD) protects plants from abiotic stress-induced reactive oxygen species (ROS) damage. Here, the effects of cadmium (Cd) exposure on ROS accumulation and SOD isozymes, as well as the identification of significant SOD isozyme genes, were investigated under different Cd stress treatments to Zhe-Maidong (Ophiopogon japonicus). The exposure to Cd stress resulted in a notable elevation in the SOD activity in roots. Cu/ZnSODa and Cu/ZnSODb were the most critical SOD isozymes in response to Cd stress, as indicated by the detection results for SOD isozymes. A total of 22 OjSOD genes were identified and classified into three subgroups, including 10 OjCu/ZnSODs, 6 OjMnSODs, and 6 OjFeSODs, based on the analysis of conserved motif and phylogenetic tree. Cu/ZnSOD-15, Cu/ZnSOD-18, Cu/ZnSOD-20, and Cu/ZnSOD-22 were the main genes that control the increase in SOD activity under Cd stress, as revealed via quantitative PCR and transcriptome analysis. Additionally, under various heavy metal stress (Cu2+, Fe2+, Zn2+, Mn2+), Cu/ZnSOD-15, Cu/ZnSOD-18, and Cu/ZnSOD-22 gene expression were significantly upregulated, indicating that these three genes play a critical part in resisting heavy metal stress. The molecular docking experiments performed on the interaction between oxygen ion (O2•-) and OjSOD protein have revealed that the critical amino acid residues involved in the binding of Cu/ZnSOD-22 to the substrate were Pro135, Ile136, Ile140, and Arg144. Our findings provide a solid foundation for additional functional investigations on the OjSOD genes, as well as suggestions for improving genetic breeding and agricultural management strategies to increase Cd resistance in O. japonicus.

16.
Heliyon ; 10(6): e28163, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545162

RESUMO

Background: Current research on amniotic fluid (AF) microbiota yields contradictory data, necessitating an accurate, comprehensive, and scientifically rigorous evaluation. Objective: This study aimed to characterise the microbial features of AF and explore the correlation between microbial information and clinical parameters. Methods: 76 AF samples were collected in this prospective cohort study. Fourteen samples were utilised to establish the nanopore metagenomic sequencing methodology, whereas the remaining 62 samples underwent a final statistical analysis along with clinical information. Negative controls included the operating room environment (OE), surgical instruments (SI), and laboratory experimental processes (EP) to elucidate the background contamination at each step. Simultaneously, levels of five cytokines (IL-1ß, IL-6, IL-8, TNF-α, MMP-8) in AF were assessed. Results: Among the 62 AF samples, microbial analysis identified seven without microbes and 55 with low microbial diversity and abundance. No significant clinical differences were observed between AF samples with and without microbes. The correlation between microbes and clinical parameters in AF with normal chromosomal structure revealed noteworthy findings. In particular, the third trimester exhibited richer microbial diversity. Pseudomonas demonstrated higher detection rates and relative abundance in the second trimester and Preterm Birth (PTB) groups. S. yanoikuyae in the PTB group exhibited elevated detection frequencies and relative abundance. Notably, Pseudomonas negatively correlated with activated partial thromboplastin time (APTT) (r = -0.329, P = 0.016), while Staphylococcus showed positive correlations with APTT (r = 0.395, P = 0.003). Furthermore, Staphylococcus negatively correlated with birth weight (r = -0.297, P = 0.034). Conclusion: Most AF samples exhibited low microbial diversity and abundance. Certain microbes in AF may correlate with clinical parameters such as gestational age and PTB. However, these associations require further investigation. It is essential to expand the sample size and undertake more comprehensive research to elucidate the clinical implications of microbial presence in AF.

17.
Sci Total Environ ; 919: 170824, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340861

RESUMO

Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.


Assuntos
Microplásticos , Plásticos , Águas Residuárias , Adsorção , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Oxigênio , Genes Bacterianos
18.
Sci Total Environ ; 922: 171276, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417500

RESUMO

The agricultural sector faces severe challenges owing to heavy metal (HM) contamination of farmlands, requiring urgent preventive measures. To address this, we investigated the impact of the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium producing abscisic acid (ABA), and biochar to minimize HM accumulation in pak choi, using three distinct expression levels of the ABA transporter NRT1.2 in pak choi and three different types of contaminated soils as experimental materials. The results revealed that pak choi with low, medium, and high NRT1.2 expression intensity, when subjected to bacterial strain-biochar treatment, exhibited an increasing trend in ABA content compared to the control. Correspondingly, the aboveground HM content decreased by 1-49 %, 22-52 %, and 15-96 %, whereas the fresh weight increased by 12-38 %, 88-126 %, and 152-340 %, respectively, showing a significant correlation with NRT1.2 expression. Pearson correlation analysis demonstrated that NRT1.2 expression intensity was inversely associated with the combined treatment's reduction in HM accumulation and positively correlated with the promotional effect. Simultaneously, soil discrepancies significantly affected the combined treatment, which was likely associated with variations in the active forms of HM in each soil. Consequently, when employing ABA-producing bacteria for mitigating crop HM accumulation, selecting plants with higher relative NRT1.2 expression intensity, combined with biochar, is recommended.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/metabolismo , Solo , Cádmio/análise
20.
Plant Physiol Biochem ; 207: 108438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38367387

RESUMO

Rhododendron dauricum L. is a semi-evergreen shrub of high ornamental and medicinal values in Northeast China. To study the molecular mechanisms of corolla coloration in R. dauricum, integrated metabolomics and transcriptomics were performed in R. dauricum featuring purple flowers and R. dauricum var. album featuring white flowers. Comparative metabolomics revealed 25 differential metabolites in the corolla of the two distinct colors, enriched in flavonoids that are closely related to pigmentation in the flower. Differential analysis of the transcriptomics data revealed enrichment of structural genes for flavonoid biosynthesis (99 up- and 58 down-regulated, respectively, in purple corollas compared to white ones). Significantly, CHS and CHI, key genes in the early stage of anthocyanin synthesis, as well as F3H, F3'H, F3'5'H, DFR, ANS, and UFGT that promote the accumulation of pigments in the late stage of anthocyanin synthesis, were up-regulated in R. dauricum (purple color). In R. dauricum var. album, FLS were key genes determining the accumulation of flavonols. In addition, transcriptome-metabolome correlation analysis identified 16 R2R3 MYB transcription factors (out of 83 MYBs) that are important for corolla coloration. Five negative and four positive MYBs were further identified by integrated transcriptional and metabolic network analysis, revealing a key role of MYBA and MYB12 in regulating anthocyanins and flavonols, respectively. Moreover, we validated the function of RdMYBA by creating stable transgenic plants and found that RdMYBA promotes anthocyanin biosynthesis. In summary, we systematically characterized the transcriptome and metabolome of two R. dauricum cultivars with different flower colors and identified MYBs as key factors in modulating corolla coloration.


Assuntos
Antocianinas , Rhododendron , Antocianinas/metabolismo , Rhododendron/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Pigmentação/genética , Transcriptoma/genética , Flores/genética , Flores/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA