Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Analyst ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856368

RESUMO

An electrochemical method was developed for ultrasensitive and selective detection of dopamine in human serum using mesoporous silica thin film modified gold microelectrodes. Vertically aligned mesoporous silica thin films were deposited onto Au microelectrodes by electrochemically assisted self-assembly (EASA). The mesochannels have uniform pore sizes of 2.1 nm in diameter and a negatively charged wall surface. Cyclic voltammetry reveals effective charge permselectivity through the negatively charged mesoporous channels. By using differential pulse voltammetry, the mesoporous silica thin film modified Au microelectrode can be employed for the ultrasensitive detection of dopamine with a detection limit as low as 0.084 µM. In addition, thanks to the electrostatic and steric effects of the silica mesochannels, excellent anti-interference and anti-fouling properties of the electrochemical sensors are demonstrated.

2.
Mol Neurobiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856794

RESUMO

Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.

3.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806811

RESUMO

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Assuntos
Aspergillus ochraceus , AMP Cíclico , Glucose , Percepção de Quorum , Transdução de Sinais , Aspergillus ochraceus/metabolismo , Aspergillus ochraceus/genética , Glucose/metabolismo , AMP Cíclico/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ocratoxinas/metabolismo
4.
ACS Omega ; 9(10): 11243-11254, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496924

RESUMO

Interlayer heterogeneity, an inevitable and complex challenge during water flooding, seriously constrains the spread of the sweep region and oil recovery enhancement in multilayered heterogeneous reservoirs. To overcome this challenge, a novel polymeric surfactant, having an excellent performance in the reduction of interfacial tension (IFT) and the increase of viscosity of displacing fluid, is applied for enlarging the sweep resonance and increasing the oil washing efficiency. Through the molecular dynamics (MD) simulation, the molecular distributing mechanisms of the polymeric surfactant at the oil-water interface are analyzed to provide the theoretical basis for explaining the microscopic mechanism of oil extraction. To directly reflect the microscopic behavior of oil extraction, multiple transparent sand-packed models are designed to investigate the flowing behavior of different fluids and the extracted mechanisms of the remaining oil in both pore and macroscales. The multilayered heterogeneous reservoirs consisting of high-, moderate-, and low-permeability layers are fabricated to represent a heterogeneous characteristic. The recognition from the visual experiment and MD simulation can study the performance control, the extracting performance of the remaining oil, and the expression of the displacing front from different perspectives. The results from MD simulation demonstrate that the polymeric surfactant can promote the disintegration of the remaining oil and enhance its mobility. The experimental results indicate that the sweep efficiency is restricted by viscous fingering and tongue advance. Through the analysis of mathematical models, the rising mobility ratio and the location of the displacing front have a strong positive relationship with viscous fingering and tongue advance, which can reasonably explain the plugging performance of the polymeric surfactant, greatly improving the sweeping effect of the whole reservoir. Moreover, the Marangoni effect generated by the IFT gradient can induce the transformation of interfacial energy to displacement kinetic energy by the emulsification of the oil-water interface so that the remaining oil in the blind-end pore can be effectively extracted. However, by comparing data from image quantification techniques and production dynamic performance, the sweep efficiency (484%) was significantly greater than that of oil recovery (300%), demonstrating that the expanded sweep effect still plays a dominant role in the extraction of remaining oil after polymeric surfactant flooding. This study provides a novel plugging and effective washing agent that is expected to be an excellent and comprehensive method for solving the problem of low oil recovery in multilayered heterogeneous reservoirs.

5.
Exp Ther Med ; 27(2): 63, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234618

RESUMO

Alzheimer's disease (AD) is a type of neurodegenerative disease characterized by cognitive impairment that is aggravated with age. The pathological manifestations include extracellular amyloid deposition, intracellular neurofibrillary tangles and loss of neurons. As the world population ages, the incidence of AD continues to increase, not only posing a significant threat to the well-being and health of individuals but also bringing a heavy burden to the social economy. There is epidemiological evidence suggesting a link between AD and metabolic diseases, which share pathological similarities. This potential link would deserve further consideration; however, the pathogenesis and therapeutic efficacy of AD remain to be further explored. The complex pathogenesis and pathological changes of AD pose a great challenge to the choice of experimental animal models. To understand the role of metabolic diseases in the development of AD and the potential use of drugs for metabolic diseases, the present article reviews the research progress of the comorbidity of AD with diabetes, obesity and hypercholesterolemia, and summarizes the different roles of animal models in the study of AD to provide references for researchers.

6.
Front Mol Neurosci ; 16: 1294450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089678

RESUMO

Introduction: The causal relationship between inflammatory factors and stroke subtypes remains unclear. This study aimed to analyze the causal relationship between 41 inflammatory factors and these two factors using Mendelian randomization (MR). Methods: We performed a two-sample MR analysis to assess the causal effects of 41 inflammatory cytokines on stroke and its subtypes and conducted a genome-wide association study (GWAS) data. The inverse-variance weighted (IVW) method was adopted as the main MR method, and we performed a series of two-sample Mendelian randomizations and related sensitivity analyses. Results: The study indicated some suggestive evidences: using the IVW approach, we found that lower possible levels of IL-4 were positively associated with the occurrence of stroke (odds ratio [OR] = 0.93, 95% confidence interval [CI]: 0.88-0.99, p = 0.014), higher interleukin (IL)-1ß, IL-12p70 levels may be positively correlated with the occurrence of stroke (OR = 1.09, 95% CI: 1.01-1.18, p = 0.027; OR = 1.08, 95% CI: 1.02-1.15, p = 0.015). For IS, results showed that lower levels of IL-4, tumor necrosis factor-related apoptosis-inducing ligand were positively associated with the occurrence of possible ischemic stroke (IS) (OR = 0.92, 95% CI: 0.87-0.98, p = 0.006; OR = 0.95, 95% CI: 0.91-1.00, p = 0.031), higher levels of IL-1ß, IL-12p70 and vascular endothelial growth factor (VEGF) may be positively correlated with the occurrence of IS (OR = 1.09, 95% CI: 1.00-1.19, p = 0.042; OR = 1.07, 95% CI: 1.01-1.15, p = 0.035; OR = 1.06, 95% CI: 1.00-1.12, p = 0.034). Our findings suggest that decreased IL-17 levels could potentially be linked to a higher likelihood of intracerebral hemorrhage (ICH) (OR = 0.51, 95% CI: 0.28-0.93, p = 0.028). For subtypes of stroke, IS and ICH, higher levels of growth regulated oncogene-α, beta nerve growth factor, IL-18, macrophage colony-stimulating factor, and induced protein 10 upregulated the risk factors while lower levels of IL-2ra and IL-17 upregulated the risk factors. Conclusion: In summary, our research validated that inflammatory markers have a pivotal impact on the development of stroke and could potentially offer a fresh approach to treating this condition.

7.
J Neuroinflammation ; 20(1): 281, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012669

RESUMO

BACKGROUND: Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke. METHODS: Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1-/-) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1ß, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay. RESULTS: Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination. CONCLUSIONS: These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteases Específicas de Ubiquitina , Animais , Camundongos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , AVC Isquêmico/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
8.
Sci Transl Med ; 15(722): eadg6752, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967204

RESUMO

T cell immunoglobulin and mucin-containing molecule 3 (Tim-3), expressed in dysfunctional and exhausted T cells, has been widely acknowledged as a promising immune checkpoint target for tumor immunotherapy. Here, using a strategy combining virtual and functional screening, we identified a compound named ML-T7 that targets the FG-CC' cleft of Tim-3, a highly conserved binding site of phosphatidylserine (PtdSer) and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). ML-T7 enhanced the survival and antitumor activity of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells and reduced their exhaustion in vitro and in vivo. In addition, ML-T7 promoted NK cells' killing activity and DC antigen-presenting capacity, consistent with the reported activity of Tim-3. ML-T7 strengthened DCs' functions through both Tim-3 and Tim-4, which is consistent with the fact that Tim-4 contains a similar FG-CC' loop. Intraperitoneal dosing of ML-T7 showed comparable tumor inhibitory effects to the Tim-3 blocking antibody. ML-T7 reduced syngeneic tumor progression in both wild-type and Tim-3 humanized mice and alleviated the immunosuppressive microenvironment. Furthermore, combined ML-T7 and anti-PD-1 therapy had greater therapeutic efficacy than monotherapy in mice, supporting further development of ML-T7 for tumor immunotherapy. Our study demonstrates a potential small molecule for selectively blocking Tim-3 and warrants further study.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Humanos , Animais , Camundongos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos/metabolismo , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
10.
ACS Omega ; 8(25): 22912-22921, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396214

RESUMO

The presence of strongly sealed faults can divide a reservoir into complex fault blocks, while partially sealed faults can be created by farewell faults within each block, leading to more intricate fluid migration and residual oil distribution. However, oilfields often overlook these partially sealed faults, focusing instead on the entire fault block, which can impact the efficiency of the production system. In addition, the current technology struggles to quantitatively describe the evolution of the dominant flow channel (DFC) during the water-flooding process, especially in reservoirs with partially sealed faults. This limits the ability to formulate effective enhanced oil recovery measures during the high water cut stage. To address these challenges, a large-scale sand model of a reservoir with a partially sealed fault was designed, and water flooding experiments were conducted. Based on the results of these experiments, a numerical inversion model was established. By combining percolation theory and the physical concept of DFC, a new method was proposed to quantitatively characterize DFC using a standardized flow quantity parameter. The evolution law of DFC was then studied, considering the variations of volume and oil saturation of DFC, and the water control effect of different measures was evaluated. The results revealed that, during the early stage of water flooding, a vertical uniform dominant seepage zone formed near the injector. As the water was injected, DFCs from the top of the injector to the bottom of the producers gradually formed in the unoccluded area. However, DFC was only formed at the bottom in the occluded area. During water flooding, the volume of DFC in each area gradually increased and then tended to stabilize. The development of the DFC in the occluded area lagged behind due to gravity and fault occlusion, leading to the formation of an unswept area near the fault in the unoccluded area. The volume of the DFC in the occluded area was the slowest, and the volume was the smallest after stabilization. Although the volume of the DFC near the fault in the unoccluded area grew the fastest, the volume was only higher than that in the occluded area after stabilization. During the high water cut period, the remaining oil was mainly distributed in the upper part of the occluded area, the area near the unoccluded fault, and the top of the reservoir in other areas. The plugging of the lower part of the producers can increase the volume of DFC in the occluded area, and the DFC moves up throughout the entire reservoir. This improves the utilization degree of the remaining oil at the top of the entire reservoir, but the remaining oil near the fault in the unoccluded area remains inaccessible. The combination of producer conversion, drilling infill wells, and producer plugging can alter the injection-production relationship and weaken the occlusion effect of the fault. The occluded area forms a new DFC, leading to a significant increase in the recovery degree. The deployment of infill wells near the fault in the unoccluded area can effectively control the area and improve the utilization of the remaining oil.

11.
Hematol Oncol ; 41(5): 848-857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496298

RESUMO

Parsaclisib is a potent and highly selective PI3Kδ inhibitor that has shown clinical benefit with monotherapy in a phase 2 study in relapsed or refractory (R/R) follicular lymphoma (FL). CITADEL-102 (NCT03039114), a phase 1, multicenter study, assessed the efficacy of parsaclisib in combination with obinutuzumab and bendamustine in patients with R/R FL. Patients were ≥18 years of age with histologically confirmed and documented CD20-positive FL, and R/R to previous rituximab-containing treatment regimens. Part one (safety run-in) determined the maximum tolerated dose of parsaclisib in combination with standard dosage regimens of obinutuzumab and bendamustine. Part two (dose expansion) was an open-label, single-group design evaluating safety, tolerability (primary endpoint), and efficacy (secondary endpoint) of parsaclisib combination therapy. Twenty-six patients were enrolled in CITADEL-102 and all patients received parsaclisib 20 mg once daily for 8 weeks, followed by 20 mg once weekly thereafter, in combination with obinutuzumab and bendamustine. One patient in safety run-in experienced a dose-limiting toxicity of grade 4 QT interval prolongation that was considered related to parsaclisib. Eight patients (30.8%) discontinued treatment due to treatment-emergent adverse events (TEAEs) of colitis (2 [7.7%]), alanine aminotransferase and aspartate aminotransferase increase (both in one patient [3.8%]), neutropenia, thrombocytopenia, QT prolongation, tonsil cancer, and maculopapular rash (each 1 [3.8%]). The most common reported TEAEs were pyrexia (53.8%), neutropenia (50.0%), and diarrhea (46.2%). Twenty-three patients (88.5%) experienced grade 3 or 4 TEAEs; the most common were neutropenia (34.6%), febrile neutropenia (23.1%), and thrombocytopenia (19.2%). Seventeen patients (65.4%) had a complete response and 3 patients (11.5%) had a partial response, for an objective response rate of 76.9%. Overall, results from CITADEL-102 suggest that the combination of parsaclisib with obinutuzumab and bendamustine did not result in unexpected safety events, with little evidence of synergistic toxicity, and demonstrated preliminary efficacy in patients with R/R FL who progressed following prior rituximab-containing regimens.


Assuntos
Linfoma Folicular , Neutropenia , Trombocitopenia , Humanos , Linfoma Folicular/patologia , Cloridrato de Bendamustina , Rituximab , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neutropenia/induzido quimicamente , Trombocitopenia/etiologia
12.
J Clin Transl Hepatol ; 11(4): 899-907, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408801

RESUMO

Background and Aims: Natural vaginal delivery and breastfeeding favor the development of a strong immune system in infants, and the immune response of infants to vaccines is closely related to their immune system. This large prospective cohort study aimed to explore the effects of delivery and feeding mode on infant's immune response to hepatitis B vaccine (HepB). Methods: A total of 1,254 infants who completed the whole course of HepB immunization and whose parents were both HBsAg negative were enrolled from infants born in Jinchang City during 2018-2019 by cluster sampling method. Results: Twenty (1.59%) of the 1,254 infants were nonresponders to HepB. Among the other 1,234 infants, 10.05% (124/1,234), 81.69% (1,008/1,234) and 8.27% (102/1,234) of infants had low, medium, and high responses to HepB, respectively. Logistic regression analysis showed that cesarean section (OR: 8.58, 95% CI: 3.11-23.65, p<0.001) and birth weight <3.18 kg (OR: 5.58, 95% CI: 1.89-16.51, p=0.002) were independent risk factors for infant nonresponse to HepB, and cesarean section (OR: 7.63, 95% CI: 4.64-12.56, p<0.001), formula feeding (OR: 4.91, 95% CI: 1.47-16.45, p=0.001), maternal anti-HBs negativity (OR: 27.2, 95% CI: 10.67-69.35, p<0.001), paternal non-response history of HepB (OR: 7.86, 95% CI: 2.22-27.82, p=0.014) and birth weight <3.22 kg (OR: 4.00, 95% CI: 2.43-6.59, p<0.001) were independent risk factors for infant low response to HepB. In cases where birth weight and genetic factors are unmodifiable and maternal anti-HBs effects are controversial, it makes sense to enhance infant response by changing delivery and feeding patterns. Conclusions: Natural vaginal delivery and breastfeeding are beneficial to the infant's immune response to HepB.

13.
Chin J Integr Med ; 29(7): 655-664, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198377

RESUMO

Acute coronary syndrome (ACS) is one of the leading causes of death in cardiovascular disease. Percutaneous coronary intervention (PCI) is an important method for the treatment of coronary heart disease (CHD), and it has greatly reduced the mortality of ACS patients since its application. However, a series of new problems may occur after PCI, such as in-stent restenosis, no-reflow phenomenon, in-stent neoatherosclerosis, late stent thrombosis, myocardial ischemia-reperfusion injury, and malignant ventricular arrhythmias, which result in the occurrence of major adverse cardiac events (MACE) that seriously reduce the postoperative benefit for patients. The inflammatory response is a key mechanism of MACE after PCI. Therefore, examining effective anti-inflammatory therapies after PCI in patients with ACS is a current research focus to reduce the incidence of MACE. The pharmacological mechanism and clinical efficacy of routine Western medicine treatment for the anti-inflammatory treatment of CHD have been verified. Many Chinese medicine (CM) preparations have been widely used in the treatment of CHD. Basic and clinical studies showed that effectiveness of the combination of CM and Western medicine treatments in reducing incidence of MACE after PCI was better than Western medicine treatment alone. The current paper reviewed the potential mechanism of the inflammatory response and occurrence of MACE after PCI in patients with ACS and the research progress of combined Chinese and Western medicine treatments in reducing incidence of MACE. The results provide a theoretical basis for further research and clinical treatment.


Assuntos
Síndrome Coronariana Aguda , Doença das Coronárias , Intervenção Coronária Percutânea , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Síndrome Coronariana Aguda/tratamento farmacológico , Resultado do Tratamento , Stents/efeitos adversos
14.
Metabolites ; 13(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110150

RESUMO

Quorum sensing (QS) is a cellular strategy of communication between intra- and inter-specific microorganisms, characterized by the release of quorum sensing molecules (QSMs) that achieve coordination to adaptation to the environment. In Aspergillus, lipids carry population density-mediated stresses, and their oxidative metabolite oxylipins act as signaling to transmit information inside cells to regulate fungal development in a synchronized way. In this study, we investigated the regulation of density-dependent lipid metabolism in the toxigenic fungi Aspergillus ochraceus by the oxidative lipid metabolomics in conjunction with transcriptomics. In addition to proven hydroxyoctadecadienoic acids (HODEs), prostaglandins (PGs) also appear to have the properties of QSM. As a class of signaling molecule, oxylipins regulate the fungal morphology, secondary metabolism, and host infection through the G protein signaling pathway. The results of combined omics lay a foundation for further verification of oxylipin function, which is expected to elucidate the complex adaptability mechanism in Aspergillus and realize fungal utilization and damage control.

15.
Front Microbiol ; 14: 1141869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025635

RESUMO

Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.

16.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108348

RESUMO

Janus kinase (JAK)/signal transducer and activator of transcription signaling (STAT) has been implicated in the pathophysiology of hidradenitis suppurativa (HS). This study evaluated treatment-related transcriptomic and proteomic changes in patients with moderate-to-severe HS treated with the investigational oral JAK1-selective inhibitor povorcitinib (INCB054707) in two phase 2 trials. Lesional skin punch biopsies (baseline and Week 8) were taken from active HS lesions of patients receiving povorcitinib (15 or 30 mg) once daily (QD) or a placebo. RNA-seq and gene set enrichment analyses were used to evaluate the effects of povorcitinib on differential gene expression among previously reported gene signatures from HS and wounded skin. The number of differentially expressed genes was the greatest in the 30 mg povorcitinib QD dose group, consistent with the published efficacy results. Notably, the genes impacted reflected JAK/STAT signaling transcripts downstream of TNF-α signaling, or those regulated by TGF-ß. Proteomic analyses were conducted on blood samples obtained at baseline and Weeks 4 and 8 from patients receiving povorcitinib (15, 30, 60, or 90 mg) QD or placebo. Povorcitinib was associated with transcriptomic downregulation of multiple HS and inflammatory signaling markers as well as the reversal of gene expression previously associated with HS lesional and wounded skin. Povorcitinib also demonstrated dose-dependent modulation of several proteins implicated in HS pathophysiology, with changes observed by Week 4. The reversal of HS lesional gene signatures and rapid, dose-dependent protein regulation highlight the potential of JAK1 inhibition to modulate underlying disease pathology in HS.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/tratamento farmacológico , Hidradenite Supurativa/genética , Hidradenite Supurativa/patologia , Transcriptoma , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Proteômica , Pele/metabolismo
17.
Biochem Biophys Res Commun ; 640: 12-20, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495605

RESUMO

The general anesthesia associated with long-term cognitive impairment has been causing the concern of the whole society. In particular, repeated anesthetic exposures may affect executive function, processing speed, and fine motor skills, which all directly depended on the functions of oligodendrocytes, myelin, and axons. However, the underlying mechanisms are still largely unknown. To investigate the spatial and temporal alterations in oligodendrocytes in the corpus callosum (CC) and hippocampus following repeated sevoflurane exposures (3%, for 2 h) from postnatal day 6 (P6) to P8, we used immunofluorescence, Western blot, and a battery of behavioral tests. As previously stated, we confirmed that early anesthetic exposures hampered both cognitive and motor performance during puberty in the rotarod and banes tests. Intriguingly, we discovered that the proliferation of oligodendrocyte progenitor cells (OPCs) was immediately enhanced after general anesthesia in the CC and hippocampus from P8 to P32. From P8 through P15, the overall oligodendrocyte population remained constant. However, along with the structural myelin abnormalities, the matured oligodendrocytes statistically reduced in the CC (from P15) and hippocampus (from P32). Administration of clemastine, which could induce OPC differentiation and myelin formation, significantly increased matured oligodendrocytes and promoted myelination and cognition. Collectively, we first demonstrated the bi-directional influence of early sevoflurane exposures on oligodendrocyte maturation and proliferation, which contributes to the cognitive impairment induced by general anesthesia. These findings illustrated the dynamic changes in oligodendrocytes in the developing brain following anesthetic exposures, as well as possible therapeutic strategies for multiple general anesthesia associated cognitive impairment.


Assuntos
Oligodendroglia , Maturidade Sexual , Animais , Camundongos , Sevoflurano/efeitos adversos , Animais Recém-Nascidos , Bainha de Mielina
19.
Front Immunol ; 13: 942493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466856

RESUMO

Bullous pemphigoid (BP), the by far most frequent autoimmune subepidermal blistering disorder (AIBD), is characterized by the deposition of autoantibodies against BP180 (type XVII collagen; Col17) and BP230 as well as complement components at the dermal-epidermal junction (DEJ). The mechanisms of complement activation in BP patients, including the generation of C5a and regulation of its two cognate C5aRs, i.e., C5aR1 and C5aR2, are incompletely understood. In this study, transcriptome analysis of perilesional and non-lesional skin biopsies of BP patients compared to site-, age-, and sex-matched controls showed an upregulated expression of C5AR1, C5AR2, CR1, and C3AR1 and other complement-associated genes in perilesional BP skin. Of note, increased expressions of C5AR2 and C3AR1 were also observed in non-lesional BP skin. Subsequently, double immunofluorescence (IF) staining revealed T cells and macrophages as the dominant cellular sources of C5aR1 in early lesions of BP patients, while C5aR2 mainly expressed on mast cells and eosinophils. In addition, systemic levels of various complement factors and associated molecules were measured in BP patients and controls. Significantly higher plasma levels of C3a, CD55, and mannose-binding lectin-pathway activity were found in BP patients compared to controls. Finally, the functional relevance of C5aR1 and C5aR2 in BP was explored by two in vitro assays. Specific inhibition of C5aR1, resulted in significantly reduced migration of human neutrophils toward the chemoattractant C5a, whereas stimulation of C5aR2 showed no effect. In contrast, the selective targeting of C5aR1 and/or C5aR2 had no effect on the release of reactive oxygen species (ROS) from Col17-anti-Col17 IgG immune complex-stimulated human leukocytes. Collectively, this study delineates a complex landscape of activated complement receptors, complement factors, and related molecules in early BP skin lesions. Our results corroborate findings in mouse models of pemphigoid diseases that the C5a/C5aR1 axis is pivotal for attracting inflammatory cells to the skin and substantiate our understanding of the C5a/C5aR1 axis in human BP. The broad expression of C5aRs on multiple cell types critical for BP pathogenesis call for clinical studies targeting this axis in BP and other complement-mediated AIBDs.


Assuntos
Penfigoide Bolhoso , Dermatopatias , Animais , Camundongos , Humanos , Pele , Biópsia , Contagem de Leucócitos , Receptor da Anafilatoxina C5a
20.
Front Aging Neurosci ; 14: 1036428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533179

RESUMO

Background: Post-operative delirium (POD), a common post-operative complication that affects up to 73. 5% of surgical patients, could prolong hospital stays, triple mortality rates, cause long-term cognitive decline and dementia, and boost medical expenses. However, the underlying mechanisms, especially the circuit mechanisms of POD remain largely unclear. Previous studies demonstrated that cannabis use might cause delirium-like behavior through the endocannabinoid system (eCBs), a widely distributed retrograde presynaptic neuromodulator system. We also found that the prelimbic (PrL) and intralimbic (IL) prefrontal cortex, a crucial hub for cognition and emotion, was involved in the eCBs-associated general anesthesia recovery. Objectives: The present study aimed to investigate the role of eCBs in POD development, and further clarify its neuronal specificity and circuit specificity attributed to POD. Methods: According to a previous study, 2 h of 1.4% isoflurane anesthesia and simple laparotomy were conducted to establish the POD model in C57/BL6 mice aged 8-12 weeks. A battery of behavioral tests, including the buried food, open field, and Y maze tests, were performed at 24 h before anesthesia and surgery (AS) and 6 and 9 h after AS. The behavioral results were calculated as a composite Z score for the POD assessment. To explore the dynamics of eCBs and their effect on POD regulation, an endocannabinoid (eCB) sensor was microinjected into the PrL, and the antagonists (AM281 and hemopressin) and agonist (nabilone) of type 1 cannabinoid receptor (CB1R), were administered systemically or locally (into PrL). Chemogenetics, combined Cre-loxP and Flp-FRT system, were employed in mutant mice for neuronal specificity and circuit specificity observation. Results: After AS, the composite Z score significantly increased at 6 and 9 but not at 24 h, whereas blockade of CB1R systemically and intra-PrL could specifically decrease the composite Z score at 6 and 9 h after AS. Results of fiber photometry further confirmed that the activity of eCB in the PrL was enhanced by AS, especially in the Y maze test at 6 h post-operatively. Moreover, the activation of glutamatergic neurons in the PrL could reduce the composite Z score, which could be significantly reversed by exogenous cannabinoid (nabilone) at 6 and 9 h post-operatively. However, activation of GABAergic neurons only decreased composite Z score at 9 h post-operatively, with no response to nabilone application. Further study revealed the glutamatergic projection from mediodorsal thalamus (MD) to PrL glutamatergic neurons, but not hippocampus (HIP)-PrL circuit, was in charge of the effect of eCBs on POD. Conclusion: Our study firstly demonstrated the involvement of eCBs in the POD pathogenesis and further revealed that the eCBs may regulate POD through the specific MDglu-PrLglu circuit. These findings not only partly revealed the molecular and circuit mechanisms of POD, but also provided an applicable candidate for the clinical prevention and treatment of POD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA