Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Eur Heart J Imaging Methods Pract ; 2(1): qyae053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39224096

RESUMO

Aims: Recent studies have shown that extracellular volume (ECV) can also be obtained without blood sampling by the linear relationship between haematocrit (HCT) and blood pool R1 (1/T1). However, whether this relationship holds for patients with myocardial infarction is still unclear. This study established and validated an ECV model without blood sampling in ST-segment elevation myocardial infarction (STEMI) patients. Methods and results: A total of 398 STEMI patients who underwent cardiac magnetic resonance (CMR) examination with T1 mapping and venous HCT within 24 h were retrospectively analysed. All patients were randomly divided into a derivation group and a validation group. The mean CMR scan time was 3 days after primary percutaneous coronary intervention. In the derivation group, a synthetic HCT formula was obtained by the linear regression between HCT and blood pool R1 (R 2 = 0.45, P < 0.001). The formula was used in the validation group; the results showed high concordance and correlation between synthetic ECV and conventional ECV in integral (bias = -0.12; R 2 = 0.92, P < 0.001), myocardial infarction site (bias = -0.23; R 2 = 0.93, P < 0.001), and non-myocardial infarction sites (bias = -0.09; R 2 = 0.94, P < 0.001). Conclusion: In STEMI patients, synthetic ECV without blood sampling had good consistency and correlation with conventional ECV. This study might provide a convenient and accurate method to obtain the ECV from CMR to identify myocardial fibrosis.

2.
Adv Sci (Weinh) ; : e2405639, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206799

RESUMO

Solar desalination is a promising solution for alleviating water scarcity due to its low-cost, environmentally friendly, and off-grid capabilities. However, simultaneous salt rejection and heat localization remain challenging, as the rapid salt convection often results in considerable heat loss. Herein, this challenge is overcome via a facile design: i) isolating high-temperature and high-salt zones by rationally designing morning glory-shaped wick structures and ii) bridging high-salt zones and bulk water with low-tortuosity macrochannels across low-temperature surfaces. The salinity gradient in the macrochannels passively triggers convective flow, facilitating the rapid transfer of salt ions from the high-salt zone to the bulk water. Meanwhile, the macrochannels are spatially isolated from the high-temperature zone, preventing heat loss during salt convection and thereby achieving a high evaporation rate (≈3 kg m-2 h-1) and superior salt rejection even in highly concentrated real seawater. This work provides new insights into salt rejection strategies and advances practical applications for sustainable seawater desalination.

3.
ACS Appl Mater Interfaces ; 16(35): 46312-46322, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39178057

RESUMO

Ammonia, with high energy density and easy transportation, holds significant potential to become an integral part of future energy systems. Among tremendous strategies, electrocatalytic ammonia production is no doubt an efficient and eco-friendly method. One particularly intriguing class of electrocatalysts for reducing nitrate to ammonia is transition metal oxides, which have been heavily researched. However, how these catalysts' oxygen vacancy (VO) affects their performance remains elusive. To address this, taking titania (the most important catalyst) as an example, we carried out experimental investigations and simulations. Contrary to the prevailing belief that the concentrated VO would increase the catalytic efficiency of nitrate reduction, it was found that a relatively low level of VO is favorable for maximizing catalytic efficiency. At low cathodic voltages, titania with minimal VO delivered both the highest reduction efficiency and the best selectivity among the different titania samples in this paper. In addition to outlining the merits of lower electron transfer resistance and accelerated reaction dynamics, we also put forth a previously unmentioned factor, the adsorption of hydrogen or the creation of an ordered hydrogen bond network, which put up a hydrogen-rich atmosphere for following nitrate reduction. Further simulation study revealed that within the hydrogen-rich atmosphere isolated VO serves as the ideal active center to enable the lowest energy barriers for the reduction of nitrate into ammonia. These findings offer fresh insights into the working mechanism of oxide-based electrocatalysts for ammonia production.

4.
Phytomedicine ; 133: 155882, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096545

RESUMO

BACKGROUND: Treating Idiopathic pulmonary fibrosis (IPF) remains challenging owing to its relentless progression, grim prognosis, and the scarcity of effective treatment options. Emerging evidence strongly supports the critical role of accelerated senescence in alveolar epithelial cells (AECs) in driving the progression of IPF. Consequently, targeting senescent AECs emerges as a promising therapeutic strategy for IPF. PURPOSE: Curcumin analogue EF24 is a derivative of curcumin and shows heightened bioactivity encompassing anti-inflammatory, anti-tumor and anti-aging properties. The objective of this study was to elucidate the therapeutic potential and underlying molecular mechanisms of EF24 in the treatment of IPF. METHODS: A549 and ATII cells were induced to become senescent using bleomycin. Senescence markers were examined using different methods including senescence-associated ß-galactosidase (SA-ß-gal) staining, western blotting, and q-PCR. Mice were intratracheally administrated with bleomycin to induce pulmonary fibrosis. This was validated by micro-computed tomography (CT), masson trichrome staining, and transmission electron microscope (TEM). The role and underlying mechanisms of EF24 in IPF were determined in vitro and in vivo by evaluating the expressions of PTEN, AKT/mTOR/NF-κB signaling pathway, and mitophagy using western blotting or flow cytometry. RESULTS: We identified that the curcumin analogue EF24 was the most promising candidate among 12 compounds against IPF. EF24 treatment significantly reduced senescence biomarkers in bleomycin-induced senescent AECs, including SA-ß-Gal, PAI-1, P21, and the senescence-associated secretory phenotype (SASP). EF24 also effectively inhibited fibroblast activation which was induced by senescent AECs or TGF-ß. We revealed that PTEN activation was integral for EF24 to inhibit AECs senescence by suppressing the AKT/mTOR/NF-κB signaling pathway. Additionally, EF24 improved mitochondrial dysfunction through induction of mitophagy. Furthermore, EF24 administration significantly reduced the senescent phenotype induced by bleomycin in the lung tissues of mice. Notably, EF24 mitigates fibrosis and promotes overall health benefits in both the acute and chronic phases of IPF, suggesting its therapeutic potential in IPF treatment. CONCLUSION: These findings collectively highlight EF24 as a new and effective therapeutic agent against IPF by inhibiting senescence in AECs.


Assuntos
Células Epiteliais Alveolares , Bleomicina , Senescência Celular , Fibrose Pulmonar Idiopática , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase , Fibrose Pulmonar Idiopática/tratamento farmacológico , Animais , Senescência Celular/efeitos dos fármacos , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Camundongos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Curcumina/farmacologia , Curcumina/análogos & derivados , Células A549 , Masculino , Compostos de Benzilideno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Piperidonas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Bioresour Technol ; 409: 131248, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127364

RESUMO

The combination of microalgal culture and wastewater treatment is an emerging topic. This study investigated the use of different microalgae to treat different types of dairy farm wastewater. The results showed that the removal of ammonia nitrogen and total phosphorus by mixed microalgae was over 99% and 80%, respectively. The highest production of protein in biomass and extracellular polymeric substances was observed in high-concentration wastewater. In the phycosphere, the abundance of Proteobacteria and Cyanobacteria increased, while that of Bacteroidota decreased. Phycosphere bacteria were strongly correlated with microalgal growth and the composition of extracellular polymeric substances, especially with bound extracellular polymeric substances relative to soluble extracellular polymeric substances. Genes associated with photosynthesis and respiration in phycosphere bacteria were upregulated, contributing to the material exchange capacity in the microalgal-bacterial systems. The interaction between microalgae and phycosphere bacteria thus represents the core of the binary cultivation system-based wastewater treatment and requires further investigation.


Assuntos
Bactérias , Indústria de Laticínios , Microalgas , Águas Residuárias , Purificação da Água , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Bactérias/metabolismo , Bactérias/genética , Purificação da Água/métodos , Fósforo/metabolismo , Fazendas , Nitrogênio/metabolismo , Biomassa
6.
Environ Pollut ; 359: 124560, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019313

RESUMO

As a signaling molecule, Nitric oxide (NO) has been widely used in abiotic stress mitigation studies.Pistia stratiotes showed a good synergistic removal effect on heavy metals, nitrogen and phosphorus, but the high concentration of copper(Cu) in swine wastewater inhibited the comprehensive removal ability of Pistia stratiotes. At present, it is not clear how the addition of NO regulates the stress resistance mechanism of Pistia stratiotes to copper in swine wastewater, and the microbial response mechanism accompanying this process is not yet clear. Therefore, in the concentration range of 0.31∼4 mg·L-1Cu2+ and NO concentration of 0,0.05 and 0.1 mg L-1, the removal effect of Pistia stratiotes on copper from swine wastewater was studied. The results showed as follows: The treatment of non-available copper in groups M and H increased by 10.67% and 22.31%, respectively, compared with that in group L. The critical point of inhibiting effect of NO on growth rate was 2.03 mg·L-1Cu. By measuring three-dimensional fluorescence spectrum, combined with parallel factor analysis and principal component analysis, it was confirmed that exogenous addition of NO affected the humification degree of dissolved organic matter(DOM) and promoted the chelation of organic matter with copper. With the increase of Cu concentration, the Reyranella and Prosthecobacter with certain copper resistance gradually gained advantages. Redundancy analysis(RDA) showed that Emiticicia had a strong correlation with the removal rates of ammonia nitrogen, total phosphorus and copper in swine wastewater, while hgcI_clade had a strong correlation with the removal rates of total nitrogen. In conclusion, controlling the dosage of NO can effectively improve the tolerance and removal effect of Pistia stratiotes on copper in swine wastewater, which is of great significance for promoting the treatment and resource transformation of swine wastewater.


Assuntos
Cobre , Óxido Nítrico , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Animais , Águas Residuárias/química , Óxido Nítrico/metabolismo , Suínos , Eliminação de Resíduos Líquidos/métodos , Araceae/metabolismo , Araceae/efeitos dos fármacos , Biodegradação Ambiental
7.
Microbiol Spectr ; 12(7): e0379223, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38809029

RESUMO

The entomopathogenic fungus Beauveria bassiana provides an eco-friendly substitute to chemical insecticides for mosquito control. Nevertheless, its widespread application has been hindered by its comparatively slow efficacy in eliminating mosquitoes. To augment the potency of B. bassiana against Aedes mosquitoes, a novel recombinant strain, Bb-Cyt1Aa, was developed by incorporating the Bacillus thuringiensis toxin gene Cyt1Aa into B. bassiana. The virulence of Bb-Cyt1Aa was evaluated against Aedes aegypti and Aedes albopictus using insect bioassays. Compared to the wild-type (WT) strain, the median lethal time (LT50) for A. aegypti larvae infected with Bb-Cyt1Aa decreased by 33.3% at a concentration of 1 × 108 conidia/mL and by 22.2% at 1 × 107 conidia/mL. The LT50 for A. aegypti adults infected with Bb-Cyt1Aa through conidia ingestion was reduced by 37.5% at 1 × 108 conidia/mL and by 33.3% at 1 × 107 conidia/mL. Likewise, the LT50 for A. aegypti adults infected with Bb-Cyt1Aa through cuticle contact decreased by 33.3% and 30.8% at the same concentrations, respectively. Furthermore, the Bb-Cyt1Aa strain also demonstrated increased toxicity against both larval and adult A. albopictus, when compared to the WT strain. In conclusion, our study demonstrated that the expression of B. thuringiensis toxin Cyt1Aa in B. bassiana enhanced its virulence against Aedes mosquitoes. This suggests that B. bassiana expressing Cyt1Aa has potential value for use in mosquito control. IMPORTANCE: Beauveria bassiana is a naturally occurring fungus that can be utilized as a bioinsecticide against mosquitoes. Cyt1Aa is a delta-endotoxin protein produced by Bacillus thuringiensis that exhibits specific and potent insecticidal activity against mosquitoes. In our study, the expression of this toxin Cyt1Aa in B. bassiana enhances the virulence of B. bassiana against Aedes aegypti and Aedes albopictus, thereby increasing their effectiveness in killing mosquitoes. This novel strain can be used alongside chemical insecticides to reduce dependence on harmful chemicals, thereby minimizing negative impacts on the environment and human health. Additionally, the potential resistance of B. bassiana against mosquitoes in the future could be overcome by acquiring novel combinations of exogenous toxin genes. The presence of B. bassiana that expresses Cyt1Aa is of significant importance in mosquito control as it enhances genetic diversity, creates novel virulent strains, and contributes to the development of safer and more sustainable methods of mosquito control.


Assuntos
Aedes , Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Beauveria , Endotoxinas , Proteínas Hemolisinas , Larva , Controle de Mosquitos , Controle Biológico de Vetores , Animais , Beauveria/genética , Beauveria/patogenicidade , Beauveria/metabolismo , Aedes/microbiologia , Controle de Mosquitos/métodos , Toxinas de Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Controle Biológico de Vetores/métodos , Larva/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Esporos Fúngicos/genética , Inseticidas/farmacologia , Inseticidas/metabolismo
8.
Transl Cancer Res ; 13(4): 1954-1968, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737677

RESUMO

Background: Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods: This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results: This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions: In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.

9.
ACS Nano ; 18(22): 14403-14413, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775684

RESUMO

The highly reversible plating/stripping of Zn is plagued by dendrite growth and side reactions on metallic Zn anodes, retarding the commercial application of aqueous Zn-ion batteries. Herein, a distinctive nano dual-phase diamond (NDPD) comprised of an amorphous-crystalline heterostructure is developed to regulate Zn deposition and mechanically block dendrite growth. The rich amorphous-crystalline heterointerfaces in the NDPD endow modified Zn anodes with enhanced Zn affinity and result in homogeneous nucleation. In addition, the unparalleled hardness of the NDPD effectively overcomes the high growth stress of dendrites and mechanically impedes their proliferation. Moreover, the hydrophobic surfaces of the NDPD facilitate the desolvation of hydrate Zn2+ and prevent water-mediated side reactions. Consequently, the Zn@NDPD presents an ultrastable lifespan exceeding 3200 h at 5 mA cm-2 and 1 mAh cm-2. The practical application potential of Zn@NDPD is further demonstrated in full cells. This work exhibits the great significance of a chemical-mechanical synergistic anode modification strategy in constructing high-performance aqueous Zn-ion batteries.

10.
Int J Cardiol ; 406: 132016, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599466

RESUMO

BACKGROUND: Epicardial adipose tissue(EAT) is associated with inflammation in previous studies but is unknown in patients with ST-segment elevation myocardial infarction(STEMI).This study investigated the correlation between epicardial fat and inflammatory cells obtained by cardiac magnetic resonance (CMR) and the effect on atrial arrhythmias in patients with STEMI. METHODS: This was a single-center, retrospective study. We consecutively selected patients who all completed CMR after Percutaneous Coronary Intervention (PCI) from January 2019 to December 2022 and then had regular follow-ups at 1, 3, 6, 9, and 12 months. The enrolled patients were grouped according to the presence or absence of atrial arrhythmia and divided into atrial and non-atrial arrhythmia groups. RESULTS: White blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED were higher in the atrial arrhythmia group than in the non-atrial arrhythmia group, and LVEF was lower than that in the non-atrial arrhythmia group (p < 0.05); EATV was significantly positively correlated with each inflammatory indices (white blood cell: r = 0.415 p < 0.001, neutrophil:r = 0.386 p < 0.001, lymphocyte:r = 0.354 p < 0.001, C-reactive protein:r = 0.414 p < 0.001); one-way logistic regression analysis showed that risk factors for atrial arrhythmias were age, heart rate, white blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED; multifactorial logistic regression analysis showed that neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias; ROC analysis showed that the area under the curve (AUC) for neutrophil was 0.862; the AUC for lymphocyte was 1.95; and the AUC for C-reactive protein was 0.862. reactive protein was 0.852; AUC for LVES was 0.683; and AUC for EATV was 0.869. CONCLUSION: In patients with STEMI, EAT was significantly and positively correlated with inflammatory indices; neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias and had good predictive value.


Assuntos
Tecido Adiposo , Inflamação , Pericárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Masculino , Feminino , Pericárdio/diagnóstico por imagem , Pericárdio/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Idoso , Inflamação/sangue , Imagem Cinética por Ressonância Magnética/métodos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/sangue , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/sangue , Intervenção Coronária Percutânea , Seguimentos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Tecido Adiposo Epicárdico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA