Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 753: 109890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246327

RESUMO

Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1ß, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-ß. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.


Assuntos
Flavanonas , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Osteogênese , Ratos Sprague-Dawley , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Cultivadas , Macrófagos/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
2.
Mol Med Rep ; 29(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240101

RESUMO

Periodontitis is a common chronic inflammatory and destructive disease in the mouth and is considered to be associated with systemic diseases. Accumulating evidence has suggested that periodontitis is a risk factor for pulmonary diseases such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, coronavirus disease 2019 (COVID­19) and lung cancer. The presence of common periodontal pathogens has been detected in samples from a variety of pulmonary diseases. Periodontal pathogens can be involved in lung diseases by promoting the adhesion and invasion of respiratory pathogens, regulating the apoptosis of respiratory epithelium and inducing overexpression of mucin and disrupting the balance of immune systemin respiratory epithelium cells. Additionally, measures to control plaque and maintain the health of periodontal tissue can decrease the incidence of respiratory adverse events. This evidence suggests a close association between periodontitis and pulmonary diseases. The present study aimed to review the clinical association between periodontitis and pneumonia, COPD, asthma, COVID­19 and lung cancer, and propose a possible mechanism and potential role of periodontal pathogens in linking periodontal disease and lung disease. This could provide a direction for further research on the association between periodontitis and lung disease and provide novel ideas for the clinical diagnosis and treatment management of these two diseases.


Assuntos
Asma , COVID-19 , Neoplasias Pulmonares , Periodontite , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Doenças Respiratórias , Humanos , Asma/epidemiologia , Fusobacterium nucleatum , Periodontite/complicações , Porphyromonas gingivalis , Doença Pulmonar Obstrutiva Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA