Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Oxid Med Cell Longev ; 2024: 5632260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139212

RESUMO

This study aimed to investigate the mechanism of quercetin increasing growth performance and decreasing incidence of diarrhea in weaned piglets. Forty-eight Duroc × Landrace × Large White weaned piglets with similar body weight (7.48 ± 0.20 kg, 28 days of age) were randomly divided into four treatments (control, 250 mg/kg quercetin, 500 mg/kg quercetin, and 750 mg/kg quercetin treatments) and fed with basal diet or experimental diet supplemented with quercetin. Performance, diarrhea rate and index, and content of serum anti-inflammatory factors were determined and calculated in weaned piglets; colonic flora and signaling pathways related to anti-inflammation were measured using 16S rDNA sequencing and RNA-seq, respectively. The results showed that compared with control, feed-to-gain ratio and content of serum interferon gamma (IFN-γ) were significantly decreased in the 500 and 750 mg/kg quercetin treatments (P < 0.05); quercetin significantly decreased diarrhea rate and diarrhea index (P < 0.05) and significantly increased the content of serum transforming growth factor (TGF-ß) in weaned piglets (P < 0.05); the content of serum NF-κB was significantly decreased in the 750 mg/kg quercetin treatment (P < 0.05); moreover, quercetin significantly increased diversity of colonic flora (P < 0.05), and at the phylum level, the relative abundance of Actinobacteria in the 500 and 750 mg/kg treatments was significantly increased (P < 0.05), and the relative abundance of Proteobacteria in the three quercetin treatments were significantly decreased (P < 0.05) in the colon of weaned piglets; at the genus level, the relative abundance of Clostridium-sensu-stricto-1, Turicibacter, unclassified_f_Lachnospiraceae, Phascolarctobacterium, and Family_XIII _AD3011_group was significantly increased (P < 0.05); the relative abundance of Subdollgranulum and Blautia was significantly decreased in the 500 and 750 mg/kg treatments (P < 0.05); the relative abundance of Eschericha-Shigella, Terrisporobacter, and Eubacterium-coprostanoligenes was significantly increased (P < 0.05); the relative abundance of Streptocococcus, Sarcina, Staphylococcus, and Ruminococcaceae_UCG-008 was significantly decreased in the three quercetin treatments (P < 0.05); the relative abundance of Ruminococcaceae_UCG_014 was significantly increased in the 250 mg/kg quercetin treatment in the colon of weaned piglets (P < 0.05). The results of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differentially expressed genes (DEGs) from the quercetin treatments were significantly enriched in nuclear transcription factor-κB (NF-κB) signal pathway (P < 0.05); mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1R1 (IL-1R1), conserved helix-loop-helix ubiquitous kinase (CHUK), toll-like receptor 4 (TLR4), and IL-1ß from quercetin treatments were significantly decreased in colonic mucosa of weaned piglets (P < 0.05). In summary, quercetin increased feed conversion ratio and decreased diarrhea through regulating NF-κB signaling pathway, controlling the balance between anti-inflammatory and proinflammatory factors, and modulating intestinal flora, thus promoting the absorption of nutrients in weaned piglets. These results provided the theoretical foundation for applying quercetin in preventing weaning piglets' diarrhea and animal husbandry practices.


Assuntos
Diarreia , Quercetina , Desmame , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Suínos , Diarreia/veterinária , Diarreia/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/tratamento farmacológico , Incidência
2.
J Colloid Interface Sci ; 675: 806-814, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002231

RESUMO

Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.

3.
Eur J Pharmacol ; 978: 176787, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38944176

RESUMO

Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proliferação de Células/genética , Microambiente Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico
4.
Virology ; 597: 110149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917689

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Peptídeos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica , COVID-19/virologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Chlorocebus aethiops , Animais
5.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714539

RESUMO

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Assuntos
Hexoquinase , Neuroblastoma , Macrófagos Associados a Tumor , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Hexoquinase/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Animais , Microambiente Tumoral/imunologia
6.
PLoS One ; 19(4): e0302233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626128

RESUMO

As a major concern shared by parents globally, COVID-19 vaccine safety is typically being messaged to the public in a negative frame in many countries. However, whether the COVID-19 vaccine safety framing have an effect on parents when vaccinating their children is unclear. Here we implement an online survey with a convenience sample of 3,861 parents living in mainland China, all over 18 years old and with at least one child under 18. The parents were randomly assigned to receive information about COVID-19 vaccine safety in either a negative frame (incidence of side effects) or a positive frame (the inverse incidence of side effects), to compare parental reactions to a range of questions about communication, risk perception, trust, involvement and behavioral intention. We found that parents were more likely to regard vaccine safety as relevant to policy support and as a higher priority for government when receiving positively framed information (p = 0.002). For some specific subgroups, parents in positive framing group showed lower risk perception and higher trust (p<0.05). This suggests that positive framing of COVID-19 vaccine safety messages show more effective performance than negative framing in terms of involvement, as well as trust and risk perception in specific subgroups, which may lead to a reflection on whether to adjust the current widespread use of negative framing. Our findings inform how governments and health care workers strategically choose the framing design of COVID-19 vaccine safety information, and have important implications for promoting COVID-19 vaccination in children in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Criança , Humanos , Adolescente , Vacinas contra COVID-19/efeitos adversos , Aceitação pelo Paciente de Cuidados de Saúde , COVID-19/prevenção & controle , Comunicação , Pais , Vacinação/efeitos adversos
7.
J Cancer Res Clin Oncol ; 150(3): 148, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512513

RESUMO

INTRODUCTION: Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS: We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS: Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION: Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.


Assuntos
Aprendizado de Máquina , Neuroblastoma , Humanos , Prognóstico , Fatores de Risco , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/metabolismo , DNA , Microambiente Tumoral , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Ligação ao Cálcio , Transativadores/metabolismo
8.
IEEE J Biomed Health Inform ; 28(3): 1363-1373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306264

RESUMO

Surface electromyogram (sEMG) has been widely used in hand gesture recognition. However, most previous studies focused on user-personalized models, which require a great amount of data from each new target user to learn the user-specific EMG patterns. In this work, we present a novel real-time gesture recognition framework based on multi-source domain adaptation, which learns extra knowledge from the data of other users, thereby reducing the data collection burdens on the target user. Additionally, compared with conventional domain adaptation methods which treat data from all users in the source domain as a whole, the proposed multi-source method treat data from different users as multiple separate source domains. Therefore, more detailed statistical information on the data distribution from each user can be learned effectively. High-density sEMG (256 channels) from 20 subjects was used to validate the proposed method. Importantly, we evaluated our method with a simulated real-time processing pipeline on continuous sEMG data stream, rather than well-segmented data. The false alarm rate during rest periods in an EMG data stream, which is typically neglected by previous studies performing offline analyses, was also considered. Our results showed that, with only 1 s sEMG data per gesture from the new user, the 10-gesture classification accuracy reached 87.66 % but the false alarm rate was reduced to 1.95 %. Our method can reduce the frustratingly heavy data collection burdens on each new user.


Assuntos
Gestos , Extremidade Superior , Humanos , Calibragem , Eletromiografia/métodos , Coleta de Dados , Algoritmos
9.
Anal Methods ; 16(7): 971-978, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38299435

RESUMO

Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.


Assuntos
Doenças Transmissíveis , Viroses , Humanos , Microfluídica , Doenças Transmissíveis/diagnóstico , Viroses/diagnóstico , Testes Imediatos
10.
Biol Pharm Bull ; 47(2): 394-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325828

RESUMO

Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Ratos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteína Vermelha Fluorescente , Neurônios Dopaminérgicos/metabolismo
11.
Int J Neural Syst ; 34(3): 2450010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369904

RESUMO

Surface electromyography (sEMG)-based gesture recognition can achieve high intra-session performance. However, the inter-session performance of gesture recognition decreases sharply due to the shift in data distribution. Therefore, developing a robust model to minimize the data distribution difference is crucial to improving the user experience. In this work, based on the inter-session gesture recognition task, we propose a novel algorithm called locality preserving and maximum margin criterion (LPMM). The LPMM algorithm integrates three main modules, including domain alignment, pseudo-label selection, and iteration result selection. Domain alignment is designed to preserve the neighborhood structure of the feature and minimize the overlap of different classes. The pseudo-label selection and iteration result selection can avoid the decrease in accuracy caused by mislabeled samples. The proposed algorithm was evaluated on two of the most widely used EMG databases. It achieves a mean accuracy of 98.46% and 71.64%, respectively, which is superior to state-of-the-art domain adaptation methods.


Assuntos
Algoritmos , Gestos , Eletromiografia/métodos , Bases de Dados Factuais
12.
Lasers Med Sci ; 39(1): 57, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329555

RESUMO

In order to investigate the postoperative efficacy, safety, stability, and predictability of SMILE surgery as a treatment for myopia, a comprehensive search was conducted in April 2023 across prominent databases, including PubMed, EMBASE, Web of Science, and Cochrane Library. The search aimed to select relevant studies of randomized controlled trials (RCTs) comparing clinical outcomes between SMILE and other corneal refractive surgeries for myopia. Upon conducting the initial search, a total of 324 records were retrieved from the aforementioned databases. These records were subjected to a meticulous selection process, adhering to predetermined inclusion criteria, resulting in 17 studies being ultimately included for analysis. By pooling the results of these studies, the comparison between SMILE surgery and alternative corneal refractive surgeries demonstrated similar outcomes in terms of efficacy, safety, stability, predictability, and higher-order aberrations (HOAs) concerning the correction of myopia. Furthermore, it was observed that the SMILE procedure exhibited a lesser impact on corneal sensation and corneal nerve density compared to other corneal refractive surgeries. Based on these findings, SMILE surgery may be considered as a treatment option with a slight superiority over conventional corneal surgery for myopia.


Assuntos
Miopia , Ferida Cirúrgica , Humanos , Miopia/cirurgia , Córnea , Período Pós-Operatório
13.
Food Sci Biotechnol ; 33(1): 47-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186623

RESUMO

Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.

14.
Sci Rep ; 14(1): 2156, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272977

RESUMO

Autonomous vehicles (AVs) have the potential to revolutionize transportation safety and mobility, but many people are still concerned about the safety of AVs and hesitate to use them. Here we survey 4112 individuals to explore the relationship between knowledge and public support for AVs. We find that AV support has a positive relationship with scientific literacy (objective knowledge about science) and perceived understanding of AV (self-assessed knowledge). Respondents who are supportive of AVs tended to have more objective AV knowledge (objective knowledge about AVs). Moreover, the results of further experiments show that increasing people's self-assessed knowledge or gaining additional objective AV knowledge may contribute to increasing their AV support. These findings therefore improve the understanding of the relationship between public knowledge levels and AV support, enabling policy-makers to develop better strategies for raising AV support, specifically, by considering the role of knowledge, which in turn may influence public behavioural intentions and lead to higher levels of AV acceptance.


Assuntos
Condução de Veículo , Veículos Autônomos , Humanos , Meios de Transporte , Intenção , Inquéritos e Questionários
15.
Curr Drug Deliv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38243939

RESUMO

BACKGROUND: Linagliptin (LNG) exhibits poor bioavailability and numerous side effects, significantly limiting its use. Transdermal drug delivery systems (TDDS) offer a potential solution to overcome the first-pass effect and gastrointestinal reactions associated with oral formulations. OBJECTIVE: The aim of this study was to develop LNG microparticle gels to enhance drug bioavailability and mitigate side effects. METHODS: Linagliptin hyaluronic acid (LNG-HA) microparticles were prepared by spray drying method and their formulation was optimized via a one-factor method. The solubility and release were investigated using the slurry method. LNG-HA microparticle gels were prepared and optimised using in vitro transdermal permeation assay. The hypoglycaemic effect of the LNG-HA microparticle gel was examined on diabetic mice. RESULTS: The results indicated that the LNG-HA microparticle encapsulation rate was 84.46%. Carbomer was selected as the gel matrix for the microparticle gels. Compared to the oral API, the microparticle gel formulation demonstrated a distinct biphasic release pattern. In the first 30 minutes, only 43.56% of the drug was released, followed by a gradual release. This indicates that the formulation achieved a slow-release effect from a dual reservoir system. Furthermore, pharmacodynamic studies revealed a sustained hypoglycemic effect lasting for 48 hours with the LNG microparticle gel formulation. CONCLUSION: These findings signify that the LNG microparticle gel holds significant clinical value for providing sustained release and justifies its practical application.

16.
Eur J Pharmacol ; 964: 176291, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38158115

RESUMO

OBJECTIVE: To identify therapeutic targets for malignant rhabdoid tumors of kidney (MRTK) and to investigate the effects and underlying mechanism of doxycycline hydrochloride on these tumors. METHODS: Gene expression and clinical data of MRTK were retrieved from the TARGET database. Differentially expressed genes (DEGs) and prognostic-related genes (PRGs) were selected through a combination of statistical analyses. The functional roles of MMP17 and MMP1 were elucidated through RNA overexpression and intervention experiments. Furthermore, in vitro and in vivo studies provided evidence for the inhibitory effect of doxycycline hydrochloride on MRTK. Additionally, transcriptome sequencing was employed to investigate the underlying molecular mechanisms. RESULTS: 3507 DEGs and 690 PRGs in MRTK were identified. Among these, we focused on 41 highly expressed genes associated with poor prognosis and revealed their involvement in extracellular matrix regulatory pathways. Notably, MMP17 and MMP1 stood out as particularly influential genes. When these genes were knocked out, a significant inhibition of proliferation, invasion and migration was observed in G401 cells. Furthermore, our study explored the impact of the matrix metalloproteinase inhibitor, doxycycline hydrochloride, on the malignant progression of G401 both in vitro and in vivo. Combined with sequencing data, the results indicated that doxycycline hydrochloride effectively inhibited MRTK progression, due to its ability to suppress the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway. CONCLUSION: Doxycycline hydrochloride inhibits the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway, thereby inhibiting the malignant progression of MRTK in vivo and in vitro.


Assuntos
Doxiciclina , Neoplasias Renais , Metaloproteinase 17 da Matriz , Tumor Rabdoide , Humanos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Rim/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/patologia , Transdução de Sinais
17.
Heliyon ; 9(11): e21281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027933

RESUMO

Objective: Partial bladder outlet obstruction(pBOO) is the most common cause of lower urinary tract symptoms (LUTS) and significantly affects the quality of life. Long-term pBOO can cause changes in bladder structure and function, referred to as bladder remodeling. The pathogenesis of pBOO-induced bladder remodeling has yet to be fully understood, so effective treatment options are lacking. Our study aimed to explore how pBOO-induced bladder remodeling brings new strategies for treating pBOO. Methods: A rat model of pBOO was established by partial ligation of the bladder neck, and the morphological changes and fibrosis changes in the bladder tissues were detected by H&E and Masson trichrome staining. Furthermore, EMT(epithelial-mesenchymal transition) related indicators and related pathway changes were further examined after TGF- ß treatment of urothelial cells SV-HUC-1. Finally, the above indicators were tested again after using the PI3K inhibitor. Subsequently, RNA sequencing of bladder tissues to identify differential genes and related pathways enrichment and validated by immunofluorescence and western blotting analysis. Results: The pBOO animal model was successfully established by partially ligating the bladder neck. H&E staining showed significant changes in the bladder structure, and Masson trichrome staining showed significantly increased collagen fibers. RNA sequencing results significantly enriched in the cytoskeleton, epithelial-mesenchymal transformation, and the PI3K-AKT-mTOR signaling pathway. Immunofluorescence and western blotting revealed EMT and cytoskeletal remodeling in SV-HUC-1 cells after induction of TGF- ß and in the pBOO bladder tissues. The western blotting showed significant activation of the PI3K-AKT-mTOR signaling pathway in SV-HUC-1 cells after induction of TGF-ß and in pBOO bladder tissues. Furthermore, EMT and cytoskeletal damage were partially reversed after PI3K pathway inhibition using PI3K inhibitors. Conclusions: In the pBOO rat model, the activation of the PI3K-AKT-mTOR signaling pathway can mediate the cytoskeletal remodeling and the EMT to induce fibrosis in the bladder tissues. PI3K inhibitors partially reversed EMT and cytoskeletal damage.

18.
Front Neuroanat ; 17: 1172512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449243

RESUMO

The hippocampus is a center of learning, memory, and spatial navigation. This region is divided into the CA1, CA2, and CA3 areas, which are anatomically different from each other. Among these divisions, the CA2 area is unique in terms of functional relevance to sociality. The CA2 area is often manually detected based on the size, shape, and density of neurons in the hippocampal pyramidal cell layer, but this manual segmentation relying on cytoarchitecture is impractical to apply to a large number of samples and dependent on experimenters' proficiency. Moreover, the CA2 area has been defined based on expression pattern of molecular marker proteins, but it generally takes days to complete immunostaining for such proteins. Thus, we asked whether the CA2 area can be systematically segmented based on cytoarchitecture alone. Since the expression pattern of regulator of G-protein signaling 14 (RGS14) signifies the CA2 area, we visualized the CA2 area in the mouse hippocampus by RGS14-immunostaining and Nissl-counterstaining and manually delineated the CA2 area. We then established "CAseg," a machine learning-based automated algorithm to segment the CA2 area with the F1-score of approximately 0.8 solely from Nissl-counterstained images that visualized cytoarchitecture. CAseg was extended to the segmentation of the prairie vole CA2 area, which raises the possibility that the use of this algorithm can be expanded to other species. Thus, CAseg will be beneficial for investigating unique properties of the hippocampal CA2 area.

19.
Am J Transl Res ; 15(5): 3548-3555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303615

RESUMO

OBJECTIVE: To investigate the efficacy of photodynamic therapy combined with surgical excision on the prognosis of patients with actinic keratosis (AK) and to analyze the risk factors for secondary cutaneous squamous cell carcinoma (cSCC). METHODS: Clinical data of 114 patients with AK treated at the West China Hospital from March 2014 to November 2018 were enrolled to this retrospective analysis. Among them 55 patients who underwent surgical resection alone were the control group (CG) and the other 59 who received photodynamic therapy combined with surgical resection were in the research group (RG). The treatment efficacy, lesion area, quality of life, incidence of adverse effects, and incidence of secondary sSCC in 3 years were compared, and the risk factors for sSCC were analyzed by multivariate logistics analysis. RESULTS: The treatment efficacy of the RG was dramatically higher than that of the CG (P<0.05), and there was no obvious difference in the incidence of adverse reactions between the two groups (P>0.05). The lesion area and dermatology life quality index of the RG were dramatically lower than those of the CG after treatment (P<0.05), and the 3-year incidence of secondary cSCC in the RG was not statistically different from that of the OG (P>0.05). A greater number of lesion sites, a family history of tumor, and a history of skin disease were independent risk factors for secondary cSCC. CONCLUSION: Photodynamic therapy combined with surgical excision has better therapeutic efficacy in AK with a high safety.

20.
Front Neurosci ; 17: 1113578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144093

RESUMO

Background: Myopia is one of the major public health problems worldwide. However, the exact pathogenesis of myopia remains unclear. This study proposes using voxel-based morphometry (VBM) to investigate potential morphological alterations in gray matter volume (GMV) in form-deprivation myopia (FDM) rats. Methods: A total of 14 rats with FDM (FDM group) and 15 normal controls (NC group) underwent high-resolution magnetic resonance imaging (MRI). Original T2 brain images were analyzed using VBM method to identify group differences in GMV. Following MRI examination, all rats were perfused with formalin, and immunohistochemical analysis of NeuN and c-fos levels was performed on the visual cortex. Results: In the FDM group, compared to the NC group, significantly decreased GMVs were found in the left primary visual cortex, left secondary visual cortex, right subiculum, right cornu ammonis, right entorhinal cortex and bilateral molecular layer of the cerebellum. Additionally, significantly increased GMVs were found in the right dentate gyrus, parasubiculum, and olfactory bulb. Conclusions: Our study revealed a positive correlation between mGMV and the expression of c-fos and NeuN in the visual cortex, suggesting a molecular relationship between cortical activity and macroscopic measurement of visual cortex structural plasticity. These findings may help elucidate the potential neural pathogenesis of FDM and its relationship to changes in specific brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA