Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(11): e2109399, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35023217

RESUMO

Organic semiconducting emitters integrated with butterfly-mimetic photonic crystals (PhCs) are fascinating for dramatic advantages over light outcoupling efficiency and multifunctional strain sensors, as well as the key step toward electrically pumped lasers. Herein, an unprecedentedly direct mesoscale self-assembly into 1D PhCs is reported through a covalently gridization-driven approach of wide-bandgap conjugated polymers. A simple solvent-casting procedure allows for in situ self-assembly of the state-of-the-art conjugated nanopolymer, poly{[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid}-co-{[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid} (PODPFG), into well-defined multilayer architectures with an excellent toughness (30-40 J m-3 ). This ordered meso-architecture shows a typical Bragg-Snell diffraction behavior to testify the PhC nature, along with a high effective refractive index (1.80-1.88) and optical transmittance (85-87%). The PhC films also exhibit an angle-dependent blue/green photoluminescence switching, an electroluminescence efficiency enhancement by 150-250%, and an amplified spontaneous emission enhancement with ultralow waveguide loss coefficient (2.60 cm-1 ). Gridization of organic semiconductors offers promising opportunities for cross-scale morphology-directed molecular design in multifunctional organic mechatronics and intelligences.

2.
Research (Wash D C) ; 2022: 9820585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098138

RESUMO

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (l p ≈ 41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k = 8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94 × 10-3 cm2 V-1 s-1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA