Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931471

RESUMO

Purpose: Adhesion between calcium oxalate crystals and renal tubular epithelial cells is a vital cause of renal stone formation; however, the drugs that inhibit crystal adhesion and the mechanism of inhibition have yet to be explored. Methods: The cell injury model was constructed using nano-COM crystals, and changes in oxidative stress levels, endoplasmic reticulum (ER) stress levels, downstream p38 MAPK protein expression, apoptosis, adhesion protein osteopontin expression, and cell-crystal adhesion were examined in the presence of Laminarin polysaccharide (DLP) and sulfated DLP (SDLP) under protected and unprotected conditions. Results: Both DLP and SDLP inhibited nano-COM damage to human kidney proximal tubular epithelial cell (HK-2), increased cell viability, decreased ROS levels, reduced the opening of mitochondrial membrane permeability transition pore, markedly reduced ER Ca2+ ion concentration and adhesion molecule OPN expression, down-regulated the expression of ER stress signature proteins including CHOP, Caspase 12, and p38 MAPK, and decreased the apoptosis rate of cells. SDLP has a better protective effect on cells than DLP. Conclusions: SDLP protects HK-2 cells from nano-COM crystal-induced apoptosis by reducing oxidative and ER stress levels and their downstream factors, thereby reducing crystal-cell adhesion interactions and the risks of kidney stone formation.

2.
Bioinorg Chem Appl ; 2024: 8843214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204734

RESUMO

Purpose: The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (-OSO3-) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods: Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3- contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results: The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions: As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high -OSO3- content may be a potential drug to prevent kidney stones.

3.
Bioinorg Chem Appl ; 2023: 9968886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161486

RESUMO

Objective: This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by Auricularia auricular polysaccharides (AAPs) with different viscosity-average molecular weights (Mv), the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. Methods: The scavenging capability and reducing capacity of four kinds of AAPs (Mv of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. Results: The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest Mv, had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. Conclusion: AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA