Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Cell Death Dis ; 15(9): 661, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256367

RESUMO

De novo purine synthesis metabolism plays a crucial role in tumor cell survival and malignant progression. However, the specific impact of this metabolic pathway on chemoresistance in ovarian cancer remains unclear. This study aims to elucidate the influence of de novo purine synthesis on chemoresistance in ovarian cancer and its underlying regulatory mechanisms. We analyzed metabolic differences between chemosensitive and chemoresistant ovarian cancer tissues using mass spectrometry-based metabolomics. Cell growth, metabolism, chemoresistance, and DNA damage repair characteristics were assessed in vitro using cell line models. Tumor growth and chemoresistance were assessed in vivo using ovarian cancer xenograft tumors. Intervention of purines and NEK6-mediated purine metabolism on chemoresistance was investigated at multiple levels. Chemoresistant ovarian cancers exhibited higher purine abundance and NEK6 expression. Inhibiting NEK6 led to decreased de novo purine synthesis, resulting in diminished chemoresistance in ovarian cancer cells. Mechanistically, NEK6 directly interacted with FOXO3, contributing to the phosphorylation of FOXO3 at S7 through its kinase activity, thereby inhibiting its nuclear translocation. Nuclear FOXO3 promoted FBXW7 transcription, leading to c-MYC ubiquitination and suppression of de novo purine synthesis. Paeonol, by inhibiting NEK6, suppressed de novo purine synthesis and enhanced chemosensitivity. The NEK6-mediated reprogramming of de novo purine synthesis emerges as a critical pathway influencing chemoresistance in ovarian cancer. Paeonol exhibits the potential to interfere with NEK6, thereby inhibiting chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O3 , Quinases Relacionadas a NIMA , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-myc , Purinas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Purinas/farmacologia , Purinas/metabolismo , Linhagem Celular Tumoral , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Camundongos , Camundongos Nus , Núcleo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
J Hazard Mater ; 479: 135775, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39250861

RESUMO

Glomalin-related soil protein (GRSP) has demonstrated significant potential for water purification and remediation of heavy metals in soils; however, its redox reactivity for As(III) sequestration and the corresponding redox-active component are still poorly understood. This study investigated the photochemical properties of GRSP and its mechanism of oxidation/adsorption of As(III). The results showed that UV irradiation triggered electron transfer and the production of reactive oxygen species (ROS) in GRSP, thereby facilitating As(III) oxidation with promotion rates ranging from 43.34 % to 111.1 %. The oxidation of As(III) occurred both on the GRSP photoforming holes and in the ROS reaction from the oxygen reduction products of the photoforming electrons. OH• and H2O2 played an important role in the oxidation of As(III) by GRSP, especially under alkaline conditions. Moreover, the presence of Fe(III) in GRSP facilitated the formation of OH• and its the oxidation capacity towards As(III). The binding of As(III) to the -COOH, -OH, and -FeO groups on the GRSP surface occurred through surface complexation. Overall, these findings provided new insights into the roles of the redox-active moieties and Fe(III) on GRSP in the promoted oxidation of As(III), which would help to deepen our understanding of the migration and transformation of As(III) in soils.


Assuntos
Arsênio , Oxirredução , Poluentes do Solo , Arsênio/química , Poluentes do Solo/química , Adsorção , Ferro/química , Raios Ultravioleta , Espécies Reativas de Oxigênio/química , Proteínas Fúngicas/química , Peróxido de Hidrogênio/química , Compostos Férricos/química , Solo/química , Glicoproteínas
3.
Sci Total Environ ; 953: 175972, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39233079

RESUMO

Eukaryotic microbes play key ecological roles in riverine ecosystems. Amplicon sequencing has greatly facilitated the identification and characterization of eukaryotic microbial communities. Currently, 18S rRNA gene V4 and V9 hypervariable regions are widely used for sequencing eukaryotic microbes. Identifying optimal regions for the profiling of size-fractional eukaryotic microbial communities is critical for microbial ecological studies. In this study, we spanned three rivers with typical natural-human influenced transition gradients to evaluate the performance of the 18S rRNA gene V4 and V9 hypervariable regions for sequencing size-fractional eukaryotic microbes (>180 µm, 20-180 µm, 5-20 µm, 3-5 µm, 0.8-3 µm). Our comparative analysis revealed that amplicon results depend on the specific species and microbial size. The V9 region was most effective for detecting a broad taxonomic range of species. The V4 region was superior to the V9 region for the identification of microbes in the minor 3 µm and at the family and genus levels, especially for specific microbial groups, such as Labyrinthulomycetes. However, the V9 region was more effective for studies of diverse eukaryotic groups, including Archamoebae, Heterolobosea, and Microsporidia, and various algae, such as Haptophyta, Florideophycidae, and Bangiales. Our results highlight the importance of accounting for potential misclassifications when employing both V4 and V9 regions for the identification of microbial sequences. The use of optimal regions for amplification could enhance the utility of amplicon sequencing in environmental studies. The insights gained from this work will aid future studies that employ amplicon-based identification approaches for the characterization of eukaryotic microbial communities and contribute to our understanding of microbial ecology within aquatic systems.


Assuntos
Eucariotos , RNA Ribossômico 18S , Rios , RNA Ribossômico 18S/genética , Rios/microbiologia , Eucariotos/genética , Microbiota/genética , Ecossistema , Monitoramento Ambiental/métodos
4.
Curr Issues Mol Biol ; 46(9): 9624-9638, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39329924

RESUMO

Recent studies have confirmed that melatonin and N6-methyladenosine (m6A) modification can influence bone cell differentiation and bone formation. Melatonin can also regulate a variety of biological processes through m6A modification. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) serves as a reader of m6A modification. In this study, we used the hindlimb unloading model as an animal model of bone loss induced by simulated microgravity and used 2D clinorotation to simulate a microgravity environment for cells on the ground. We found that hnRNPA2B1 was downregulated both in vitro and in vivo during simulated microgravity. Further investigations showed that hnRNPA2B1 could promote osteoblast differentiation and that overexpression of hnRNPA2B1 attenuated the suppression of osteoblast differentiation induced by simulated microgravity. We also discovered that melatonin could promote the expression of hnRNPA2B1 under simulated microgravity. Moreover, we found that promotion of osteoblast differentiation by melatonin was partially dependent on hnRNPA2B1. Therefore, this research revealed, for the first time, the role of the melatonin/hnRNPA2B1 axis in osteoblast differentiation under simulated microgravity. Targeting this axis may be a potential protective strategy against microgravity-induced bone loss and osteoporosis.

5.
Neuroimage Clin ; 43: 103655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146837

RESUMO

BACKGROUND: Internal capsule strokes often result in multidomain cognitive impairments across memory, attention, and executive function, typically due to disruptions in brain network connectivity. Our study examines these impairments by analyzing interactions within the triple-network model, focusing on both static and dynamic aspects. METHODS: We collected resting-state fMRI data from 62 left (CI_L) and 56 right (CI_R) internal capsule stroke patients, along with 57 healthy controls (HC). Using independent component analysis to extract the default mode (DMN), executive control (ECN), and salience networks (SAN), we conducted static and dynamic functional network connectivity analyses (DFNC) to identify differences between stroke patients and controls. For DFNC, we used k-means clustering to focus on temporal properties and multilayer network analysis to examine integration and modularity Q, where integration represents dynamic interactions between networks, and modularity Q measures how well the network is divided into distinct modules. We then calculated the correlations between SFNC/DFNC properties with significant inter-group differences and cognitive scales. RESULTS: Compared to HC, both CI_L and CI_R patients showed increased static FCs between SAN and DMN and decreased dynamic interactions between ECN and other networks. CI_R patients also had heightened static FCs between SAN and ECN and maintained a state with strongly positive FNCs across all networks in the triple-network model. Additionally, CI_R patients displayed decreased modularity Q. CONCLUSION: These findings highlight that stroke can result in the disruption of static and dynamic interactions in the triple network model, aiding our understanding of the neuropathological basis for multidomain cognitive deficits after internal capsule stroke.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Rede Nervosa , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Função Executiva/fisiologia , Adulto , Cápsula Interna/fisiopatologia , Cápsula Interna/diagnóstico por imagem
6.
Brain Imaging Behav ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179736

RESUMO

Potential changes in patterns of dynamic functional network connections at the cerebellar-cerebral level in pontine infarction (PI) patients remain unclear. The study aimed to investigate the abnormal patterns of dynamic functional connectivity (dFC) between the cerebellar subregions within networks and regions of the cerebral cortex in patients with PI. Forty-six chronic left pontine infarction (LPI), 32 chronic right pontine infarction (RPI), and 50 healthy controls (HCs) were recruited to undergo resting-state fMRI scans. Cerebellar-cerebral dFC was characterized using the sliding window method and seed-based connectivity analyses. Correlations between altered dFC values and clinical variables (The Rey Auditory Verbal Learning Test and Flanker task) in PI patients and healthy controls were investigated. Compared with HCs, the PI groups showed significantly aberrant cerebellar-cerebral dFC between cerebellar subregions within networks and supratentorial cerebral cortex, including executive, default-mode, and motor networks. Furthermore, Correlation analysis showed a decoupling between abnormal dFC and cognitive functions in PI patients. These findings indicate that PI patients are accompanied by damage to cerebellar subregions within networks and cerebellar-cerebral pathways, which may provide a potential target for treatment or an indication of therapeutic efficacy.

7.
J Hazard Mater ; 475: 134920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880047

RESUMO

Dibutyl phthalate (DBP) as a plasticizer has been widely used in the processing of plastic products. Nevertheless, these DBP additives have the potential to be released into the environment throughout the entire life cycle of plastic products. Herein, the leaching behavior of DBP from PVC microplastics (MPs) in freshwater and seawater and its potential risks were investigated. The results show that the plasticizer content, UV irradiation, and hydrochemical conditions have a great influence on the leaching of DBP from the MPs. The release of DBP into the environment increases proportionally with higher concentrations of additive DBP in MPs, particularly when it exceeds 15 %. The surface of MPs undergoes accelerated oxidation and increased hydrophilicity under UV radiation, thereby facilitating the leaching of DBP. Through 30 continuous leaching experiments, the leaching of DBP from MPs in freshwater and seawater can reach up to 12.28 and 5.42 mg g-1, respectively, indicating that MPs are a continuous source of DBP pollution in the aquatic environment. Moreover, phthalate pollution index (PPI) indicates that MPs can significantly increase DBP pollution in marine environment through land and sea transport processes. Therefore, we advocate that the management of MPs waste containing DBP be prioritized in coastal sustainable development.

8.
Comput Biol Med ; : 108712, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38906761

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconveniencethis may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

9.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735540

RESUMO

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Assuntos
Fator de Indução de Apoptose , Cálcio , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Presbiacusia , Animais , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/genética , Ratos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Cálcio/metabolismo , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/genética , Parthanatos/genética , Potencial da Membrana Mitocondrial , Estria Vascular/metabolismo , Estria Vascular/patologia , Apoptose , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos Sprague-Dawley , Dano ao DNA , Envelhecimento/metabolismo , Envelhecimento/patologia , Cóclea/metabolismo , Cóclea/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Masculino , Humanos , Células Cultivadas
10.
Neuroimage Clin ; 42: 103612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692208

RESUMO

BACKGROUND: Subcortical stroke may significantly alter the cerebral cortical structure and affect attention function, but the details of this process remain unclear. The study aimed to investigate the neural substrates underlying attention impairment in patients with subcortical stroke. MATERIALS AND METHODS: In this prospective observational study, two distinct datasets were acquired to identify imaging biomarkers underlying attention deficit. The first dataset consisted of 86 patients with subcortical stroke, providing a cross-sectional perspective, whereas the second comprised 108 patients with stroke, offering longitudinal insights. All statistical analyses were subjected to false discovery rate correction upon P < 0.05. RESULTS: In the chronic-stage data, the stroke group exhibited significantly poorer attention function compared with that of the control group. The cortical structure analysis showed that patients with stroke exhibited decreased cortical thickness of the precentral gyrus and surface area of the cuneus, along with an increase in various frontal, occipital, and parietal cortices regions. The declined attention function positively correlated with the superior frontal gyrus cortical thickness and supramarginal gyrus surface area. In the longitudinal dataset, patients with stroke showed gradually increasing cortical thickness and surface area within regions of obvious structural reorganization. Furthermore, deficient attention positively correlated with supramarginal gyrus surface area both at the subacute and chronic stages post-stroke. CONCLUSIONS: Subcortical stroke can elicit dynamic reorganization of cortical areas associated with attention impairment. Moreover, the altered surface area of the supramarginal gyrus is a potential neuroimaging biomarker for attention deficits.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Estudos Transversais , Adulto , Estudos Longitudinais , Atenção/fisiologia
11.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741271

RESUMO

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Assuntos
Infartos do Tronco Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Vias Neurais , Ponte , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Ponte/diagnóstico por imagem , Ponte/fisiopatologia , Infartos do Tronco Encefálico/fisiopatologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Idoso , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
12.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619536

RESUMO

Nanoscale spatially controlled modulation of the properties of ferroelectrics via artificial domain pattering is crucial to their emerging optoelectronics applications. New patterning strategies to achieve high precision and efficiency and to link the resultant domain structures with device functionalities are being sought. Here, we present an epitaxial heterostructure of SrRuO3/PbTiO3/SrRuO3, wherein the domain configuration is delicately determined by the charge screening conditions in the SrRuO3 layer and the substrate strains. Chemical etching of the top SrRuO3 layer leads to a transition from in-plane a domains to out-of-plane c domains, accompanied by a giant (>105) modification in the second harmonic generation response. The modulation effect, coupled with the plasmonic resonance effect from SrRuO3, enables a highly flexible design of nonlinear optical devices, as demonstrated by a simulated split-ring resonator metasurface. This domain patterning strategy may be extended to more thin-film ferroelectric systems with domain stabilities amenable to electrostatic boundary conditions.

13.
Environ Res ; 252(Pt 1): 118793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552828

RESUMO

Glomalin-related soil protein (GRSP) is a significant component in the sequestration of heavy metal in soils, but its mechanisms for metal adsorption are poorly known. This study combined spectroscopic data with molecular docking simulations to reveal metal adsorption onto GRSP's surface functional groups at the molecular level. The EXAFS combined with FTIR and XPS analyses indicated that the adsorption of Cd(II), Sr(II), and Ni(II) by GRSP occurred mainly through the coordination of -OH and -COOH groups with the metal. The -COOH and -OH groups bound to the metal as electron donors and the electron density of the oxygen atom decreased, suggesting that electrostatic attraction might be involved in the adsorption process. Two-dimensional correlation spectroscopy revealed that preferential adsorption occurred on GRSP for the metal in sequential order of -COOH groups followed by -OH groups. The presence of the Ni-C shell in the Ni EXAFS spectrum suggested that Ni formed organometallic complexes with the GRSP surface. However, Sr-C and Cd-C were absent in the second shell of the Sr and Cd spectra, which was attributed to the adsorption of Sr and Cd ions with large hydration ion radius by GRSP to form outer-sphere complexes. Through molecular docking simulations, negatively charged residues such as ASP151 and ASP472 in GRSP were found to provide electrostatic attraction and ligand combination for the metal adsorption, which was consistent with the spectroscopic analyses. Overall, these findings provided new insights into the interaction mechanisms between GRSP and metals, which will help deepen our understanding of the ecological functions of GRSP in metal sequestration.


Assuntos
Simulação de Acoplamento Molecular , Níquel , Níquel/química , Adsorção , Cádmio/química , Sedimentos Geológicos/química , Proteínas Fúngicas/química , Metais Pesados/química , Áreas Alagadas , Poluentes do Solo/química , Glicoproteínas
14.
Free Radic Biol Med ; 214: 137-157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364944

RESUMO

The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound ß-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Sitosteroides , Feminino , Humanos , Antioxidantes/metabolismo , Apoptose , Argininossuccinato Sintase , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/genética , Espécies Reativas de Oxigênio , Transdução de Sinais , Ubiquitinas
15.
J Hazard Mater ; 465: 133153, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056268

RESUMO

Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.


Assuntos
Cromo , Solo , Solo/química , Cromo/análise , Ferro , Proteínas Fúngicas/química , Glicoproteínas/química , Carbono , Adsorção
16.
Front Aging Neurosci ; 15: 1294009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046468

RESUMO

Introduction: The objective of this study was to characterize the alteration patterns of dynamic spatiotemporal activity in chronic subcortical stroke patients with varying motor outcomes, while investigating the imaging indicators relevant to the assessment of potential cognitive deficits in these patients. Methods: A total of 136 patients and 88 normal controls were included in the analysis of static and dynamic intrinsic brain activity, determined by amplitude of low-frequency fluctuations. Results: The findings unveiled that subcortical stroke patients exhibited significantly aberrant temporal dynamics of intrinsic brain activity, involving regions within multiple brain networks. These spatiotemporal patterns were found to be contingent upon the side of the lesion. In addition, these aberrant metrics demonstrated potential in discerning cognitive deficits in stroke patients with memory impairment, with the dynamic indices exerting more influence than the static ones. The observe findings may indicate that subcortical stroke can trigger imbalances in the segregation and integration of spatiotemporal patterns across the entire brain with multi-domain networks, especially in patients with poor motor outcomes. Conclusion: It suggests that the temporal dynamics indices of intrinsic brain activity could serve as potential imaging indicators for assessing cognitive impairment in patients with chronic subcortical stroke, which may be associated with the motor outcomes.

17.
Hear Res ; 440: 108913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939412

RESUMO

Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.


Assuntos
Emissões Otoacústicas Espontâneas , Presbiacusia , Humanos , Idoso , Ratos , Animais , Lactente , Emissões Otoacústicas Espontâneas/fisiologia , Cóclea/fisiologia , Envelhecimento/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Biomarcadores , Purinas , Limiar Auditivo/fisiologia , Mamíferos
18.
Hortic Res ; 10(7): uhad111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37786730

RESUMO

Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.

19.
Front Cardiovasc Med ; 10: 1157327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663420

RESUMO

Background: Optimal blood pressure (BP) management strategy among the elderly remains controversial, with insufficient consideration of long-term BP trajectory. This study aimed to identify BP trajectory patterns as well as terminal BP trajectory among the Chinese elderly and to explore the relationships between BP trajectories and all-cause mortality and cardiovascular disease (CVD) mortality. Methods: We included 11,181 participants older than 60 at baseline (mean age, 80.98 ± 10.71) with 42,871 routine BP measurements from the Chinese Longitudinal Healthy Longevity Survey. Latent class trajectory analysis and Cox proportional hazard model were conducted to identify trajectory patterns and their associations with mortality. Furthermore, we also applied mixed-effects model to identify terminal BP trajectories among the elderly. Results: Compared with stable at normal high level trajectory, excess systolic BP (SBP) trajectory with decreasing trend was associated with a 34% (HR = 1.34, 95% CI: 1.23-1.45) higher risk of all-cause mortality. Considering the competing risk of non-CVD death, excess BP trajectory with decreasing trend had a more pronounced effect on CVD mortality, in which HR (95% CI) was 1.67 (1.17, 2.37). Similar results were also found in diastolic BP (DBP), pulse pressure (PP), and mean arterial pressure (MAP) trajectories. We further conducted a mixed-effects model and observed that SBP and PP trajectories first increased and began to decline slightly six years before death. In contrast, DBP and MAP showed continuous decline 15 years before death. Conclusion: Long-term BP trajectory was associated with all-cause mortality, especially CVD mortality. Keeping a stable BP over time may be an important way for CVD prevention among the elderly.

20.
J Pers Med ; 13(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37763053

RESUMO

BACKGROUND: Endometriosis is a common nonfatal gynecological disease, and infertility is one of its main dangers. Endometriosis-related infertility causes serious damage to women's health and places a burden on women of reproductive age. The aim of this study was to describe the current burden of endometriosis-associated infertility and to analyze its spatiotemporal trends. METHODS: Age-standardized prevalence rate (ASPR) data from 1990 to 2019 for Endometriosis-related primary infertility (ERPI) and secondary infertility (ERSI) were obtained from the Global Burden of Disease Study (GBD) 2019. These data spanning three decades cover the global, sociodemographic index (SDI) regions, GBD regions, and 204 countries and territories. Spatiotemporal trends were analyzed by calculating the estimated annual percentage change (EAPC) and using a time-period-cohort model. RESULTS: Globally, the ASPR of ERPI and ERSI showed a weak downward trend from 1990 to 2019, with EAPCs of -1.25 (95% CI: -1.39 to -1.11) and -0.6 (95% CI: -0.67 to -0.53), respectively. The spatiotemporal trends in ERPI and ERSI varied substantially between regions and age groups. When endometriosis-related infertility burden was linked to SDI values, a strong negative correlation was observed between the ASPR of ERSI and its EAPC and SDI values. When modeling with age-period-cohort, ERPI burden was found to be highest at ages 20-25 years, while ERSI burden was persistently higher at ages 20-45 years. Using 2000-2004 as the reference period, both ERPI and ERSI burden decreased with each year among women. Significant variability in burden between regions was found for the birth cohort factor. CONCLUSIONS: The global burden of endometriosis-related infertility declined minimally from 1990 to 2019. However, this burden varied considerably across regions, age groups, periods, and birth cohorts. The results of this study reflect spatiotemporal trends in the burden of endometriosis-related infertility over the study period and may be used to help improve health management, develop timely and effective prevention and control strategies, and provide epidemiologic theoretical evidence for reducing the burden for endometriosis-related infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA