Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Curr Drug Targets ; 24(8): 648-661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138489

RESUMO

Targeting sodium-dependent glucose transporters (SGLT1 and SGLT2) represents a new class of pharmacotherapy for type 2 diabetes mellitus, a major global health issue with an increasing social and economic burden. Following recent successes in market approvals of SGLT2 inhibitors, the ongoing effort has paved the way for the discovery of novel agents via structure-activity relationship studies, preclinical and clinical testing, including SGLT2 inhibitors, SGLT1/2 dual inhibitors, and selective SGLT1 inhibitors. A growing understanding of the physiology of SGLTs allows drug developers to explore additional cardiovascular and renal protective benefits of these agents in T2DM patients at risk. This review provides an overview of the recent investigational compounds and discusses future perspectives of drug discovery in this area.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Hipoglicemiantes/efeitos adversos , Transportador 2 de Glucose-Sódio/uso terapêutico , Rim
2.
Acta Pharmacol Sin ; 41(5): 678-685, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31937933

RESUMO

Fecal microbiota transplantation (FMT) has become an effective strategy to treat metabolic diseases, including type 2 diabetes mellitus (T2DM). We previously reported that the intestinal microbiome had significant difference between individuals with normal glucose tolerance and T2DM in Chinese Kazak ethnic group. In this study, we investigated the effects of transplanted fecal bacteria from Kazaks with normal glucose tolerance (KNGT) in db/db mice. The mice were treated with 0.2 mL of fecal bacteria solution from KNGT daily for 10 weeks. We showed that the fecal bacteria from KNGT successfully colonized in the intestinal tract of db/db mice detected on day 14. In the FMT-treated db/db mice, the levels of fasting blood glucose, postprandial glucose, total cholesterol, triglyceride, and low-density lipoprotein-cholesterol were significantly downregulated, whereas high-density lipoprotein-cholesterol levels were upregulated. In the FMT-treated db/db mice, Desulfovibrio and Clostridium coccoides levels in gut were significantly decreased, but the fecal levels of Akkermansia muciniphila and colon histone deacetylase-3 (HDAC3) protein expression were increased. At 8 weeks, both intestinal target bacteria and HDAC3 were correlated with glycolipid levels; Akkermansia muciniphila level was positively correlated with HDAC3 protein expression (r = +0.620, P = 0.037). Our results suggest that fecal bacteria from KNGT could potentially be used to treat diabetic patients.


Assuntos
Clostridiales/metabolismo , Desulfovibrio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Akkermansia/metabolismo , Animais , Diabetes Mellitus Tipo 2/terapia , Modelos Animais de Doenças , Dislipidemias/terapia , Humanos , Masculino , Camundongos
3.
J Inorg Biochem ; 177: 249-258, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28551160

RESUMO

Oxaliplatin-based chemotherapy is the mainstay for the treatment of advanced colorectal cancer. Copper transporter proteins have been implicated in the transport of platinum-based anticancer drugs, but their expression in human colorectal cancer cell lines and roles in controlling their sensitivity to oxaliplatin are not well studied or understood. The endogenous and modified expression of copper uptake transporter 1 (hCTR1) was studied in a panel of human colorectal cancer cell lines (DLD-1, SW620, HCT-15 and COLO205) with ~20-fold variation in oxaliplatin sensitivity. hCTR1 protein was expressed more abundantly than ATP7A and ATP7B proteins, but with broadly similar levels and patterns of expression across four colorectal cancer cell lines. In a colorectal cancer cell-line background (DLD-1), stable transfection of the hCtr1 gene enhanced hCTR1 protein expression and increased the sensitivity of the cells to the cytotoxicity of copper and oxaliplatin. Treatment with copper chelators (ammonium tetrathiomolybdate, bathocuproinedisulfonic acid and D-penicillamine) increased expression of hCTR1 protein in DLD-1 and SW620 cells, and potentiated the cytotoxicity of oxaliplatin in DLD-1 but not SW620 cells. Treatment with copper chloride altered neither the expression of copper transporters nor cytotoxicity of oxaliplatin in colorectal cancer lines. In conclusion, human colorectal cancer cell lines consistently express hCTR1 protein despite their variable sensitivity to oxaliplatin. Genetic or pharmacological modification of hCTR1 protein expression may potentiate oxaliplatin sensitivity in some but not all colorectal cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte de Cátions/genética , Compostos Organoplatínicos/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Quelantes/farmacologia , Cobre/metabolismo , Transportador de Cobre 1 , ATPases Transportadoras de Cobre/metabolismo , Sinergismo Farmacológico , Humanos , Molibdênio/farmacologia , Compostos Organoplatínicos/metabolismo , Oxaliplatina , Penicilamina/farmacologia , Fenantrolinas/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Oncotarget ; 7(41): 67277-67287, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572309

RESUMO

NVP-BKM120 (BKM120) is a new pan-class I phosphatidylinositol-3 kinase (PI3K) inhibitor and has been tested in clinical trials as an anticancer agent. In this study, we determined whether BKM120 induces autophagy and the impact of autophagy induction on BKM120's growth-inhibitory activity. BKM120 potently induced elevation of autophagosome-bound type II LC3 (LC3-II) protein, predominantly in cell lines insensitive to BKM120, thereby inducing autophagy. The presence of lysosomal protease inhibitor chloroquine further enhanced the levels of LC3-II. BKM120 combined with chloroquine, enhanced growth-inhibitory effects including induction of apoptosis, suggesting that autophagy is a protective mechanism counteracting BKM120's growth-inhibitory activity. Interestingly, BKM120 increased p-ERK1/2 levels. When blocking the activation of this signaling with MEK inhibitors or with knockdown of ERK1/2, the ability of BKM120 to increase LC3-II was attenuated and the growth-inhibitory effects including induction of apoptosis were accordingly enhanced, suggesting that the MEK/ERK activation contributes to BKM120-induced authophagy. In mouse xenograft model, we also found that the combination of BKM120 and PD0325901 synergistically suppressed cell growth in human lung cancer cells. Thus, the current study not only reveals mechanisms accounting for BKM120-induced autophagy, but also suggests an alternative method to enhance BKM120's therapeutic efficacy against non-small cell lung cancer(NSCLC) by blocking autophagy with either a lysosomal protease inhibitor or MEK inhibitor.


Assuntos
Aminopiridinas/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Tumour Biol ; 37(8): 11177-86, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26935060

RESUMO

MicroRNAs (miRNAs) play a critical role in cancer development and progression. Deregulated expression of miR-204 has been reported in several cancers, but the mechanism through which miR-204 modulates human non-small cell lung cancer (NSCLC) is largely unknown. In this study, we investigate the expression and functional role of miR-204 in human NSCLC tissues and cell lines. RNA isolation, qRT-PCR, MTT, colony formation assay, cell cycle assay, cell apoptosis assay, cell migration assay, and Western blot were performed. Statistical analysis was performed using SPSS 18.0 software and statistical significance was accepted at p value <0.05. miR-204 level was significantly reduced in NSCLC tissues as compared to that of non-neoplastic tissues. Transient over-expression of miR-204 by transfecting with miR-204 mimics suppressed NSCLC cell proliferation, migration, and induced apoptosis and G1 arrest, whereas inhibition of miR-204 showed the converse effects. Additionally, activating transcription factor 2 (ATF2), an important transcription factor, was demonstrated as a potential target gene of miR-204. Subsequent investigations found a negative correlation between miR-204 level and ATF2 expression in NSCLC tissue samples. Moreover, we observed that miR-204 expression inversely affected endogenous ATF2 expression at both mRNA and protein levels in vitro. Taken together, miR-204 may act as a tumor suppressor by directly targeting ATF2 in NSCLC.


Assuntos
Fator 2 Ativador da Transcrição/biossíntese , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fator 2 Ativador da Transcrição/genética , Adulto , Idoso , Apoptose/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
6.
Sci Rep ; 5: 17348, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26615818

RESUMO

Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2(-/-) mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-ß) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2(-/-) mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morus/química , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Colite/tratamento farmacológico , Colite/etiologia , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Ácido Linoleico/química , Ácidos Linolênicos/química , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Mucina-2/deficiência , Óxido Nítrico/biossíntese , Fosforilação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Transporte Proteico
7.
J Neurochem ; 135(6): 1099-112, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26364854

RESUMO

Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Tratamento Farmacológico , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Platina/farmacologia , Animais , Proteínas de Transporte de Cátions/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Oxaliplatina , Ratos
8.
Dis Markers ; 2015: 824304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999661

RESUMO

The role of genetics in progression of cancer is an established fact, and susceptibility risk and difference in outcome to chemotherapy may be caused by the variation in low-penetrance alleles of risk genes. We selected seven genes (CRP, GPC5, ACTA2, AGPHD1, SEC14L5, RBMS3, and GKN1) that previously reported link to lung cancer (LC) and genotyped single nucleotide polymorphisms (SNPs) of these genes in a case-control study. A protective allele "C" was found in rs2808630 of the C-reactive protein (CRP). Model association analysis found genotypes "T/C" and "C/C" in the dominant model and genotype "T/C" in the overdominant model of rs2808630 associated with reduced LC risk. Gender-specific analysis in each model showed that genotypes "T/T" and "C/C" in rs2352028 of the Glypican 5 (GPC5) were associated with increased LC risk in males. Logistic regression analysis showed "C/T" genotype carriers of rs4254535 in the Gastrokine 1 (GKN1) had less likelihood to have chemotherapy response. Our results suggest a potential association between CRP and GPC5 variants with LC risk; variation in GKN1 is associated with chemotherapy response in the Chinese Han population.


Assuntos
Povo Asiático/genética , Glipicanas/genética , Neoplasias Pulmonares/genética , Hormônios Peptídicos/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular/genética , Adulto , Povo Asiático/etnologia , Estudos de Casos e Controles , China/etnologia , Cisplatino/uso terapêutico , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etnologia , Masculino , Pessoa de Meia-Idade
9.
Curr Drug Targets ; 16(12): 1356-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901528

RESUMO

The superfamily of human ATP-binding cassette (ABC) transporters comprises seven subfamilies (ABCA to G) with 48 members. In addition to their profound physiological and pharmacological functions, ABC transporters play important roles in instigating multidrug resistance (MDR) in cancer by mediating the efflux of many anticancer drugs, particularly, ABCB1, ABCG2 and ABCC subfamily members. Previous development of ABCB1 transporter inhibitors has provided insights into seeking novel strategies in developing new classes of compound that inhibit ABCB1 and other MDRrelated ABC transporters. We herein review and evaluate current evidence in this area, with an emphasis on experimental and investigational agents that are under preclinical and clinical tests, including tyrosine kinase inhibitors, natural products, microRNAs and novel chemical entities. New strategies targeting ABC transporters in cancer stem cells and future perspectives in this field are also discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Humanos , MicroRNAs/uso terapêutico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores
10.
Eur J Cancer Prev ; 23(6): 497-501, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25254308

RESUMO

Lung cancer has the highest mortality rate among cancers; however, its nosogenesis is still unclear. Genome-wide association studies have shown that the telomerase reverse transcriptase (TERT) gene, located in the chromosome 5p15.33 region, is one of the genes associated with the risk of lung cancer. In this case-control study, we genotyped 11 tag single-nucleotide polymorphisms of the TERT gene to evaluate their association with lung cancer risk in the Han Chinese population. Two tag single-nucleotide polymorphisms were found to be associated with lung cancer risk on using the χ2-test: rs4246742 [odds ratio (OR)=0.77, 95% confidence interval (CI) 0.60-0.98; P=0.03] and rs2853672 (OR=1.26, 95% CI 1.01-1.57; P=0.045). By using SNPStats software we also found rs2242652 (OR=1.47, 95% CI 1.02-2.13; P=0.04) in the dominant model and rs2736098 (OR=1.38, 95% CI 1.06-1.80; P=0.017), rs2853672 (OR=1.41, 95% CI 1.11-1.80; P=0.0048), and rs4246742 (OR=0.75, 95% CI 0.58-0.97; P=0.029) in the log-additive model. 'T/C-T/T' of rs10069690 conferred an increased risk for male sex in the dominant model (OR=1.80, 95% CI, 1.05-3.08; P=0.03) and 'TC' increased risk for male sex in the overdominant model (OR=1.85, 95% CI, 1.08-3.17; P=0.031). Our findings, combined with previous studies, suggest that polymorphisms in the TERT gene contribute to the risk for lung cancer in the Chinese Han population.


Assuntos
Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Telomerase/genética , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
11.
Clin Exp Pharmacol Physiol ; 40(6): 371-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23556474

RESUMO

The purpose of the present study was to determine whether copper histidine could inhibit copper transporter 1 (Ctr1)-mediated transport of oxaliplatin in vitro and thereby limit the accumulation of platinum and neurotoxicity of oxaliplatin in dorsal root ganglion (DRG) tissue in vivo. In HEK293 cells overexpressing rat Ctr1, copper histidine was shown to be transported by Ctr1 and to inhibit their Ctr1-mediated uptake of oxaliplatin. Pilot in vivo dose-finding studies showed that copper histidine at doses up to 2 mg/kg, p.o., daily for 5 days/week could be added to maximum tolerated doses of oxaliplatin (1.85 mg/kg, i.p., twice weekly) for 8 week combination treatment studies in female Wistar rats. After treatment, rats showed significant changes in sensory neuron size profiles in DRG tissue induced by oxaliplatin that were not altered by its coadministration with copper histidine. The expression of copper transporters (Ctr1 and copper-transporting P-type ATPase 1 (Atp7a)) in DRG tissue appeared unchanged following treatment with oxaliplatin given alone or with copper histidine. Platinum and copper tissue levels were higher in DRG than in most other tissues, but were unaltered by the addition of copper histidine to oxaliplatin treatment. In conclusion, copper histidine inhibited cellular uptake of oxaliplatin mediated by Ctr1 in vitro without altering the accumulation of platinum or neurotoxicity of oxaliplatin in DRG tissue in vivo at doses tolerated in combination with oxaliplatin treatment.


Assuntos
Proteínas de Transporte de Cátions/antagonistas & inibidores , Gânglios Espinais/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Metais Pesados/prevenção & controle , Histidina/análogos & derivados , Compostos Organometálicos/farmacologia , Compostos Organoplatínicos/toxicidade , Platina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Transportador de Cobre 1 , ATPases Transportadoras de Cobre , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HEK293 , Intoxicação do Sistema Nervoso por Metais Pesados/patologia , Histidina/farmacologia , Humanos , Compostos Organoplatínicos/farmacocinética , Oxaliplatina , Ratos , Transfecção
12.
Biochem Pharmacol ; 85(2): 207-15, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123662

RESUMO

Dorsal root ganglion (DRG) neurons are affected by platinum-induced neurotoxicity and neurodegenerative processes associated with disturbed copper homeostasis and transport. This study aimed to understand the role of copper transporter 1 (Ctr1) in the uptake and toxicity of copper and platinum drugs in cultured rat DRG neurons, and the functional activities of rat Ctr1 (rCtr1) as a membrane transporter of copper and platinum drugs. Heterologous expression of rCtr1 in HEK293 cells (HEK/rCtr1 cells) increased the uptake and cytotoxicity of copper, oxaliplatin, cisplatin and carboplatin, in comparison to isogenic vector-transfected control cells. Cultured rat DRG neurons endogenously expressed rCtr1 protein on their neuronal cell body plasma membranes and cytoplasm, and displayed substantial capacity for taking up copper, but were resistant to copper toxicity. The uptake of copper by both cultured rat DRG neurons and HEK/rCtr1 cells was saturable and inhibited by cold temperature, silver and zinc, consistent with it being mediated by rCtr1. Cultured rat DRG neurons accumulated platinum during their exposure to oxaliplatin and were sensitive to oxaliplatin cytotoxicity. The accumulation of platinum by both cultured rat DRG neurons and HEK/rCtr1 cells, during oxaliplatin exposure, was saturable and temperature dependent, but was inhibited by copper only in HEK/rCtr1 cells. In conclusion, rCtr1 can transport copper and platinum drugs, and sensitizes cells to their cytotoxicities. DRG neurons display substantial capacity for accumulating copper via a transport process mediated by rCtr1, but appear able to resist copper toxicity and use alternative mechanisms to take up oxaliplatin.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/efeitos adversos , Gânglios Espinais/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/metabolismo , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Carboplatina/efeitos adversos , Carboplatina/metabolismo , Carboplatina/farmacologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Cisplatino/efeitos adversos , Cisplatino/metabolismo , Cisplatino/farmacologia , Cobre/metabolismo , Cobre/farmacologia , Sulfato de Cobre/efeitos adversos , Sulfato de Cobre/metabolismo , Sulfato de Cobre/farmacologia , Transportador de Cobre 1 , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Moduladores de Transporte de Membrana/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Compostos Organoplatínicos/efeitos adversos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Ratos , Ratos Wistar , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo
13.
Curr Cancer Drug Targets ; 12(8): 962-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22794121

RESUMO

Membrane transporters govern the movement of drugs and their metabolites across biological membranes, thereby determining their pharmacokinetics, efficacy and adverse drug reactions. Platinum-based anticancer drugs are a mainstay of chemotherapy for many human malignancies. However, their clinical utility is limited by tumor resistance and normal tissue toxicities, which are determined at least in part by the level of tissue accumulation of platinum. Recently, several members of the ATP-binding cassette (ABC), solute carrier (SLC) and ATPase membrane protein superfamilies have been found to contribute to the net accumulation of platinum drugs in malignant and normal tissues. Herein, a review has been carried out to critically evaluate current preclinical and clinical evidence implicating membrane transporters as determinants of the pharmacology of cisplatin, oxaliplatin, carboplatin and related investigational compounds. The evidence includes studies of recombinant cell systems with genetically modified expression of individual membrane transporters, platinum-resistant or -sensitive human cancer cells and in vivo xenografted tumors, animal models of platinum-induced nephro-, oto- or neurotoxicity, and clinical studies of associations between the membrane transporter tumor expression and patient outcomes from platinum-based chemotherapy. Understanding the role of membrane transporters as determinants of the pharmacology of platinum drugs will be a basis for targeting these drug transporters in individualized and optimized platinum-based cancer therapy, and new drug development.


Assuntos
Antineoplásicos/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Platina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/farmacologia , Cisplatino/toxicidade , ATPases Transportadoras de Cobre , Humanos , Proteínas de Membrana Transportadoras/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Platina/farmacologia , Platina/uso terapêutico , Platina/toxicidade , Compostos de Platina/farmacocinética , Proteínas SLC31 , Resultado do Tratamento
14.
J Pharmacol Exp Ther ; 338(2): 537-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21606177

RESUMO

The organic cation/carnitine transporters OCTN1 and OCTN2 are related to other organic cation transporters (OCT1, OCT2, and OCT3) known for transporting oxaliplatin, an anticancer drug with dose-limiting neurotoxicity. In this study, we sought to determine whether OCTN1 and OCTN2 also transported oxaliplatin and to characterize their functional expression and contributions to its neuronal accumulation and neurotoxicity in dorsal root ganglion (DRG) neurons relative to those of OCTs. [(14)C]Oxaliplatin uptake, platinum accumulation, and cytotoxicity were determined in OCTN-overexpressing human embryonic kidney (HEK) 293 cells and primary cultures of rat DRG neurons. Levels of mRNA and functional activities of rat (r)Octns and rOcts in rat DRG tissue and primary cultures were characterized using reverse transcription-polymerase chain reaction and uptake of model OCT/OCTN substrates, including [(3)H]1-methyl-4-phenylpyridinium (MPP(+)) (OCT1-3), [(14)C]tetraethylammonium bromide (TEA(+)) (OCT1-3 and OCTN1/2), [(3)H]ergothioneine (OCTN1), and [(3)H]l-carnitine (OCTN2). HEK293 cells overexpressing rOctn1, rOctn2, human OCTN1, and human OCTN2 showed increased uptake and cytotoxicity of oxaliplatin compared with mock-transfected HEK293 controls; in addition, both uptake and cytotoxicity were inhibited by ergothioneine and L-carnitine. The uptake of ergothioneine mediated by OCTN1 and of L-carnitine mediated by OCTN2 was decreased during oxaliplatin exposure. rOctn1 and rOctn2 mRNA was readily detected in rat DRG tissue, and they were functionally active in cultured rat DRG neurons, more so than rOct1, rOct2, or rOct3. DRG neuronal accumulation of [(14)C]oxaliplatin and platinum during oxaliplatin exposure depended on time, concentration, temperature, and sodium and was inhibited by ergothioneine and to a lesser extent by L-carnitine but not by MPP(+). Loss of DRG neuronal viability during oxaliplatin exposure was inhibited by ergothioneine but not by L-carnitine or MPP(+). OCTN1 and OCTN2 both transport oxaliplatin and are functionally expressed by DRG neurons. OCTN1-mediated transport of oxaliplatin appears to contribute to its neuronal accumulation and treatment-limiting neurotoxicity more so than OCTN2 or OCTs.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Compostos Organoplatínicos/metabolismo , Animais , Transporte Biológico Ativo/genética , Células Cultivadas , Feminino , Células HEK293 , Humanos , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/genética , Oxaliplatina , Ratos , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto , Simportadores
15.
Mol Pain ; 6: 53, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20836889

RESUMO

BACKGROUND: ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg) or drug vehicle twice weekly for 8 weeks. RESULTS: In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H). High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. CONCLUSIONS: In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non-overlapping distribution of ATP7A and CTR1 within rat DRG tissue may be required to support the potentially differing cuproenzyme requirements of distinct subsets of sensory neurons, and could influence the transport and neurotoxicity of oxaliplatin.


Assuntos
Adenosina Trifosfatases/genética , Envelhecimento/metabolismo , Proteínas de Transporte de Cátions/genética , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Adenosina Trifosfatases/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/metabolismo , Tamanho Celular/efeitos dos fármacos , Transportador de Cobre 1 , ATPases Transportadoras de Cobre , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Vértebras Lombares/citologia , Vértebras Lombares/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos Organoplatínicos/farmacologia , Oxaliplatina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Pain ; 5: 66, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19922644

RESUMO

BACKGROUND: Oxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG) tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel. RESULTS: After treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H) immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; P < 0.0002) and size (-45%; P < 0.0001) of pNF-H-immunoreactive neurons after oxaliplatin treatment. pNF-H-immunoreactive neurons had overlapping size profiles and co-localisation with neurons displaying cell body immunoreactivity for parvalbumin, non-phospho-specific neurofilament medium subunit (NF-M) and non-phospho-specific neurofilament heavy subunit (NF-H), in control DRG. However, there were no significant changes in the numbers of neurons with immunoreactivity for parvalbumin (4.6%, P = 0.82), NF-M (-1%, P = 0.96) or NF-H (0%; P = 0.93) after oxaliplatin treatment, although the sizes of parvalbumin (-29%, P = 0.047), NF-M (-11%, P = 0.038) and NF-H (-28%; P = 0.0033) immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; P < 0.0001) and cisplatin (-35.2%; P = 0.03) but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; P = 0.008) but not by cisplatin, carboplatin or paclitaxel. CONCLUSION: This study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.


Assuntos
Antineoplásicos/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Carboplatina/efeitos adversos , Carboplatina/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Feminino , Imuno-Histoquímica , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Ratos , Ratos Wistar
17.
Cancer Chemother Pharmacol ; 64(4): 847-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19466412

RESUMO

PURPOSE: We report the neuronal expression of copper transporter 1 (CTR1) in rat dorsal root ganglia (DRG) and its association with the neurotoxicity of platinum-based drugs. METHODS: CTR1 expression was studied by immunohistochemistry and RT-PCR. The toxicity of platinum drugs to CTR1-positive and CTR1-negative neurons was compared in DRG from animals treated with maximum tolerated doses of oxaliplatin (1.85 mg/kg), cisplatin (1 mg/kg) or carboplatin (8 mg/kg) twice weekly for 8 weeks. RESULTS: Abundant CTR1 mRNA was detected in DRG tissue. CTR1 immunoreactivity was associated with plasma membranes and cytoplasmic vesicular structures of a subpopulation (13.6 +/- 3.1%) of mainly large-sized (mean cell body area, 1,787 +/- 127 microm(2)) DRG neurons. After treatment with platinum drugs, the cell bodies of these CTR1-positive neurons became atrophied, with oxaliplatin causing the greatest percentage reduction in the mean cell body area relative to controls (42%; P < 0.05), followed by cisplatin (18%; P < 0.05) and carboplatin causing the least reduction (3.2%; P = NS). CTR1-negative neurons, with no immunoreactivity or only diffuse cytoplasmic staining, showed less treatment-induced cell body atrophy than CTR1-positive neurons. CONCLUSIONS: CTR1 is preferentially expressed by a subset of DRG neurons that are particularly vulnerable to the toxicity of platinum drugs. These findings, together with its neuronal membrane localization, are suggestive of CTR1-related mechanisms of platinum drug neuronal uptake and neurotoxicity.


Assuntos
Antineoplásicos/toxicidade , Proteínas de Transporte de Cátions/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/toxicidade , Animais , Proteínas de Transporte de Cátions/genética , Transportador de Cobre 1 , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Clin Exp Pharmacol Physiol ; 35(12): 1440-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18671714

RESUMO

1. Satraplatin is an investigational orally administered platinum-based antitumour drug. The present study compared the plasma protein binding, stability and degradation of satraplatin with that of its active metabolite JM118 and cisplatin. 2. The platinum complexes were incubated in human plasma for up to 2 h at 37 degrees C and quantified in plasma fractions by inductively coupled plasma-mass spectrometry on- or off-line to high-performance liquid chromatography. 3. All three platinum drugs became irreversibly bound to plasma proteins and showed negligible reversible protein binding. They were also unstable in plasma and generated one or more platinum-containing degradation products during their incubation. However, the three platinum complexes differed in the kinetics of their instability and protein binding, as well as in the number of degradation products formed during their incubation. 4. In conclusion, the plasma protein binding, instability and degradation of satraplatin and its active metabolite JM118 are qualitatively similar to that of cisplatin and other clinically approved platinum-based drugs. Quantitative differences in their irreversible protein binding and degradation were related to their respective physiochemical properties and bioactivation mechanisms.


Assuntos
Antineoplásicos/sangue , Cisplatino/sangue , Drogas em Investigação/metabolismo , Compostos Organoplatínicos/sangue , Antineoplásicos/metabolismo , Cisplatino/metabolismo , Estabilidade de Medicamentos , Humanos , Compostos Organoplatínicos/metabolismo , Ligação Proteica/fisiologia
19.
J Inorg Biochem ; 102(2): 303-10, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18029019

RESUMO

In this study we characterised the in vitro antitumour and hepatotoxicity profiles of a series of Au(I) and Ag(I) bidentate phenyl and pyridyl complexes in a panel of cisplatin-resistant human ovarian cancer cell-lines, and in isolated rat hepatocytes. The gold and silver compounds overcame cisplatin-resistance in the CH1-cisR, 41M-cisR and SKOV-3 cell-lines, and showed cytotoxic potencies strongly correlated with their lipophilicity. Complexes with phenyl or 2-pyridyl ligands had high antitumour and hepatotoxic potency and low selectivity between different cell-lines. Their cytotoxicity profiles were similar to classic mitochondrial poisons and an example of this type of compound was shown to accumulate preferentially in the mitochondria of cancer cells in a manner that depended upon the mitochondrial membrane potential. In contrast, complexes with 3- or 4-pyridyl ligands had low antitumour and hepatotoxic potency and cytotoxicity profiles similar to 2-deoxy-D-glucose. In addition, they showed high selectivity between different cell-lines that was not attributable to variation in uptake in different cell-types. The in vitro hepatotoxic potency of the series of gold and silver compounds varied by over 61-fold and was closely related to their lipophilicity and hepatocyte uptake. In conclusion, Au(I) and Ag(I) bidendate pyridyl phosphine complexes demonstrate activity against cisplatin-resistant human cancer cells and in vitro cytotoxicity that strongly depends upon their lipophilicity.


Assuntos
Antineoplásicos/farmacologia , Hepatócitos/efeitos dos fármacos , Compostos Organoáuricos/farmacologia , Compostos Organometálicos/farmacologia , Fosfinas/farmacologia , Prata/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Cisplatino/farmacologia , Hepatócitos/metabolismo , Humanos , Masculino , Compostos Organoáuricos/química , Compostos Organoáuricos/toxicidade , Compostos Organometálicos/química , Compostos Organometálicos/toxicidade , Fosfinas/química , Fosfinas/toxicidade , Ratos , Ratos Wistar , Prata/química , Prata/toxicidade
20.
Cancer Chemother Pharmacol ; 59(5): 661-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16944150

RESUMO

PURPOSE: To evaluate the antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a vascular disrupting agent currently under phase II clinical trials in combination with cancer chemotherapy, in rats bearing chemically induced primary mammary tumours. METHODS: Tumours were induced in female Wistar rats by injection of N-nitroso-N-methylurea at 100 mg/kg subcutaneously. A clinically relevant single dose of DMXAA (1,800 mg/m(2)) was given to animals when tumours were measurable. Tumour volume, extent of necrosis and cytokine profiles were measured. RESULTS: Compared with the control group, DMXAA treatment significantly delayed tumour doubling time and extended the time from treatment to euthanasia. Four of five DMXAA-treated animals showed necrosis involving 3.7-41.2% of the area of the tumour section at 24 h compared with none of four control animals (P < 0.028, Chi-square test). Intratumoural levels of TNFalpha, IL-6, VEGF and IL-1alpha were increased 4 h after DMXAA treatment. CONCLUSIONS: This study shows for the first time that DMXAA has significant in vivo antitumour activity against non-transplanted autochthonous tumours and in a host species other than the mouse.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Xantonas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinógenos , Citocinas/biossíntese , Feminino , Imunoensaio , Marcação In Situ das Extremidades Cortadas , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Metilnitrosoureia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA