Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 80(11): 337, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897551

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Disbiose/tratamento farmacológico , Infecções por Klebsiella/tratamento farmacológico , Inflamação/tratamento farmacológico , Alquilação , Quinase Syk
2.
Int J Biol Sci ; 19(15): 4931-4947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781519

RESUMO

Gasdermins (GSDMs) serve as pivotal executors of pyroptosis and play crucial roles in host defence, cytokine secretion, innate immunity, and cancer. However, excessive or inappropriate GSDMs activation is invariably accompanied by exaggerated inflammation and results in tissue damage. In contrast, deficient or impaired activation of GSDMs often fails to promptly eliminate pathogens, leading to the increasing severity of infections. The activity of GSDMs requires meticulous regulation. The dynamic modulation of GSDMs involves many aspects, including autoinhibitory structures, proteolytic cleavage, lipid binding and membrane translocation (oligomerization and pre-pore formation), oligomerization (pore formation) and pore removal for membrane repair. As the most comprehensive and efficient regulatory pathway, posttranslational modifications (PTMs) are widely implicated in the regulation of these aspects. In this comprehensive review, we delve into the complex mechanisms through which a variety of proteases cleave GSDMs to enhance or hinder their function. Moreover, we summarize the intricate regulatory mechanisms of PTMs that govern GSDMs-induced pyroptosis.


Assuntos
Gasderminas , Processamento de Proteína Pós-Traducional , Proteólise , Endopeptidases , Imunidade Inata , Peptídeo Hidrolases
3.
EClinicalMedicine ; 59: 101970, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37131542

RESUMO

Background: The great heterogeneity of patients with chronic critical illness (CCI) leads to difficulty for intensive care unit (ICU) management. Identifying subphenotypes could assist in individualized care, which has not yet been explored. In this study, we aim to identify the subphenotypes of patients with CCI and reveal the heterogeneous treatment effect of fluid balance for them. Methods: In this retrospective study, we defined CCI as an ICU length of stay over 14 days and coexists with persistent organ dysfunction (cardiovascular Sequential Organ Failure Assessment (SOFA) score ≥1 or score in any other organ system ≥2) at Day 14. Data from five electronic healthcare record datasets covering geographically distinct populations (the US, Europe, and China) were studied. These five datasets include (1) subset of Derivation (MIMIC-IV v1.0, US) cohort (2008-2019); (2) subset Derivation (MIMIC-III v1.4 'CareVue', US) cohort (2001-2008); (3) Validation I (eICU-CRD, US) cohort (2014-2015); (4) Validation II (AmsterdamUMCdb/AUMC, Euro) cohort (2003-2016); (5) Validation III (Jinling, CN) cohort (2017-2021). Patients who meet the criteria of CCI in their first ICU admission period were included in this study. Patients with age over 89 or under 18 years old were excluded. Three unsupervised clustering algorithms were employed independently for phenotypes derivation and validation. Extreme Gradient Boosting (XGBoost) was used for phenotype classifier construction. A parametric G-formula model was applied to estimate the cumulative risk under different daily fluid management strategies in different subphenotypes of ICU mortality. Findings: We identified four subphenotypes as Phenotype A, B, C, and D in a total of 8145 patients from three countries. Phenotype A is the mildest and youngest subgroup; Phenotype B is the most common group, of whom patients showed the oldest age, significant acid-base abnormality, and low white blood cell count; Patients with Phenotype C have hypernatremia, hyperchloremia, and hypercatabolic status; and in Phenotype D, patients accompany with the most severe multiple organ failure. An easy-to-use classifier showed good effectiveness. Phenotype characteristics showed robustness across all cohorts. The beneficial fluid balance threshold intervals of subphenotypes were different. Interpretation: We identified four novel phenotypes that revealed the different patterns and significant heterogeneous treatment effects of fluid therapy within patients with CCI. A prospective study is needed to validate our findings, which could inform clinical practice and guide future research on individualized care. Funding: This study was funded by 333 High Level Talents Training Project of Jiangsu Province (BRA2019011), General Program of Medical Research from the Jiangsu Commission of Health (M2020052), and Key Research and Development Program of Jiangsu Province (BE2022823).

4.
Int Rev Immunol ; 42(5): 364-378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35468044

RESUMO

Metabolism could be served as a guiding force for immunity, and macrophages undergo drastic metabolic reprogramming during inflammatory processes, including enhancing glycolysis and reshaping the tricarboxylic acid cycle (TCA) cycle. The disrupted TCA cycle facilitates itaconate accumulation, consistent with the significant up-regulation of immune response gene 1 (IRG1) in activated macrophages. IRG1 catalyzes the decarboxylation of cis-aconitate to synthesize itaconate, and notably, the IRG1-Itaconate axis has excellent potential to link macrophages' immunity and metabolism. Here, we review vital molecules that affect the activation of the IRG1-Itaconate axis, including interferon regulatory factor 1/9 (IRF1/9), transcription 1 and 3 (STAT1/3), CCAAT enhancer-binding protein ß (C/EBPß), and the protein kinase C (PKC). We then focus on how the IRG1-Itaconate axis regulates the inflammatory pathway in macrophages, proposed to involve kelch-like ECH-associated protein 1 (Keap1), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), gasdermin D (GSDMD), activating transcription factor 3 (ATF3), receptor-interacting protein kinase-3 (RIPK3), et al. In addition, we provide an overview of the way the axis participates in the metabolism of macrophages. Eventually, we summarize current connections between the IRG1-Itaconate axis and inflammatory diseases, bringing light to new therapeutic opportunities in inflammatory diseases.


Assuntos
Fator 2 Relacionado a NF-E2 , Succinatos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Macrófagos
5.
Expert Opin Ther Targets ; 26(11): 1011-1026, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573664

RESUMO

INTRODUCTION: Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED: This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION: The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/terapia , Macrófagos/metabolismo , Inflamação , Citocinas/metabolismo , Fibrose
7.
Front Surg ; 9: 816245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310442

RESUMO

Background: Traditional percutaneous catheter drainage (PCD) and surgical intervention could not always achieve satisfactory results for patients with Crohn's disease (CD) who have complications with intra-abdominal abscess. We proposed a trocar puncture with sump drainage for the treatment of CD with intra-abdominal abscess and compared it with the conventional PCD and surgical intervention. Methods: Crohn's disease patients with intra-abdominal abscess and admitted to our hospital from 2011 to 2020 were identified by reviewing the electronic medical records. We divided them into Trocar, PCD, and fecal diverting (FD) groups, according to the ways of treating an abscess. Outcomes, risk factors for abscess recurrence, and postoperative complications were compared among the three groups. Results: A total of 69 patients were included and they were divided into Trocar (n = 18), PCD (n = 29), and FD (n = 22) groups. Four patients in the PCD group were transferred to receive the FD surgery due to the failure of initial treatment. The incidence of abscess recurrence was significantly higher in the PCD (48%) and FD (50%) groups compared to the patients using the trocar puncture with the sump drain (Trocar group) (16.7%). There were 8 patients in Trocar, 22 in PCD, and 20 s in the FD group who received enterectomy. None of the patients in the Trocar had an ultimate stoma and the incidence of postoperative complications was statistically lower [0% (Trocar) vs. 31.8% (PCD) vs. 45% (FD), P < 0.05]. The way of initial treating of the abscess was significantly correlated with the abscess recurrence and postoperative complications. Conclusions: Trocar puncture with a sump drain had a lower incidence of abscess recurrence, abdominal adhesions, postdrainage, and postoperative complications compared to the conventional PCD or surgical intervention.

8.
Inflamm Bowel Dis ; 28(4): 572-585, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34473281

RESUMO

BACKGROUND: Stimulator of interferon genes (STING) has essential functions in the immune responses and can induce cancer cell apoptosis. However, it is not completely clear how STING plays a role in colitis-associated colorectal cancer (CAC) and whether it can trigger pyroptosis during the tumorigenesis of CAC. METHODS: To investigate the role of STING-modulated pyroptosis in the development of CAC, STING knockout and Wild type mice were challenged with azoxymethane (AOM) and dextran sodium sulfate (DSS) to establish a murine CAC model. STING pharmacological agonist was used to further study the functions of STING signaling in the tumorigenesis. Moreover, STING endogenous ligand was employed to verify the effects of STING in human colon cancer cells. RESULTS: STING deficiency mice were more susceptible to CAC by reducing pyroptosis of tumor cells, whereas overactivation of STING with the agonist suppressed tumorigenesis of CAC. STING also managed CAC development by modulating tumor cells proliferation, adhesion, and invasion, as well as inflammatory response. The ex vivo studies indicated that STING could induce pyroptosis via spleen tyrosine kinase (Syk), and Syk knockdown weakened such pyroptotic tumor cells death. In addition, the visible physical interaction between STING and Syk was observed in colorectal tumor samples of CAC patients. CONCLUSIONS: STING-mediated Syk signaling may regulate the tumorigenesis of CAC by modulating pyroptosis of tumor cells, and modulation of STING/Syk serves as a novel therapeutic strategy for CAC therapy.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Animais , Azoximetano/toxicidade , Carcinogênese/patologia , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Quinase Syk/metabolismo
10.
Cell Death Dis ; 12(9): 815, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453041

RESUMO

Crohn's disease (CD) is an intestinal immune-dysfunctional disease. Extracellular vesicles (EVs) are membrane-enclosed particles full of functional molecules, e.g., nuclear acids. Recently, EVs have been shown to participate in the development of CD by realizing intercellular communication among intestinal cells. However, the role of EVs carrying double-strand DNA (dsDNA) shed from sites of intestinal inflammation in CD has not been investigated. Here we isolated EVs from the plasma or colon lavage of murine colitis and CD patients. The level of exosomal dsDNA, including mtDNA and nDNA, significantly increased in murine colitis and active human CD, and was positively correlated with the disease activity. Moreover, the activation of the STING pathway was verified in CD. EVs from the plasma of active human CD triggered STING activation in macrophages in vitro. EVs from LPS-damaged colon epithelial cells were also shown to raise inflammation in macrophages via activating the STING pathway, but the effect disappeared after the removal of exosomal dsDNA. These findings were further confirmed in STING-deficient mice and macrophages. STING deficiency significantly ameliorated colitis. Besides, potential therapeutic effects of GW4869, an inhibitor of EVs release were assessed. The application of GW4869 successfully ameliorated murine colitis by inhibiting STING activation. In conclusion, exosomal dsDNA was found to promote intestinal inflammation via activating the STING pathway in macrophages and act as a potential mechanistic biomarker and therapeutic target of CD.


Assuntos
Doença de Crohn/patologia , DNA/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Colite/patologia , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Enterócitos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Proteínas de Membrana/deficiência , Camundongos Knockout , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Clin Transl Med ; 11(2): e339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634985

RESUMO

Inflammatory bowel disease (IBD) has emerged a global disease and the ascending incidence and prevalence is accompanied by elevated morbidity, mortality, and substantial healthcare system costs. However, the current typical one-size-fits-all therapeutic approach is suboptimal for a substantial proportion of patients due to the variability in the course of IBD and a considerable number of patients do not have positive response to the clinically approved drugs, so there is still a great, unmet demand for novel alternative therapeutic approaches. Spleen tyrosine kinase (Syk), a cytoplasmic nonreceptor protein tyrosine kinase, plays crucial roles in signal transduction and there are emerging data implicating that Syk participates in pathogenesis of several gut disorders, such as IBD. In this study, we observed the Syk expression in IBD patients and explored the effects of therapeutic Syk inhibition using small-molecule Syk inhibitor piceatannol in bone marrow-derived macrophages (BMDMs). In addition, due to the poor bioavailability and pharmacokinetics of small-molecule tyrosine kinase inhibitors and superiority of targeting nanoparticles-based drug delivery system, we herein prepared piceatannol-encapsulated poly(lactic-co-glycolic acid) nanoparticles that conjugated with chemokine C-C motif ligand 4 (P-NPs-C) and studied its therapeutic effects in vitro in BMDMs and in vivo in experimental colitis model. Our results indicated that in addition to alleviating colitis, oral administration of P-NPs-C promoted the restoration of intestinal barrier function and improved intestinal microflora dysbiosis, which represents a promising treatment for IBD.


Assuntos
Quimiocina CCL4/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Estilbenos/uso terapêutico , Quinase Syk/antagonistas & inibidores , Animais , Células CACO-2 , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estilbenos/administração & dosagem , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA